Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Occup Environ Med ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39016248

ABSTRACT

OBJECTIVE: To evaluate how upper limb impairment ratings are affected by updates to the AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) Sixth Edition 2024 compared with the AMA Guides Sixth Edition 2008, and to investigate potential correlations with judicial, legislative, and economic factors. METHODS: Two expert evaluators reviewed 31 upper limb clinical vignettes from the 2008 and 2024 versions. The impairment ratings for each version were compared. RESULTS: After following the impairment ratings steps in each version, the results for 2024 showed no significant differences when compared with the impairment ratings generated using 2008 methods (Cohen's Kappa = 1.00). CONCLUSIONS: The updated AMA Guides Sixth Edition 2024 with improved, transparent processes and enhanced diagnosis-based impairment tables provides efficiency while retaining the accuracy, validity, and reliability of past versions of the AMA Guides.

2.
J Occup Environ Med ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729185

ABSTRACT

OBJECTIVE: Describe and evaluate methodological improvements in AMA Guides to the Evaluation of Permanent Impairment (Guides) Sixth Edition 2024, including an updated sequential method and enhanced diagnosis-based impairment tables, compared to the Guides Sixth 2008. METHODS: Three physician experts and three pre-medical students, respectively, completed two rounds of impairment ratings using the AMA Guides Sixth 2008 vs. 2024 methods. Impairment values and completion times using each method were compared for both groups. RESULTS: Time to complete an impairment rating by experts averaged 3.5 minutes using Guides 2024 compared with 13.9 minutes using Guides 2008, with 100% accuracy and reliability for both. Students' time averaged 5.3 minutes and 15.9 minutes, respectively, with increased accuracy and reliability with Guides 2024. CONCLUSIONS: The Guides Sixth 2024 allowed more-efficient impairment ratings while retaining accuracy, consistency, reliability, and reproducibility.

3.
Vaccine ; 42(7): 1512-1520, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38307743

ABSTRACT

OBJECTIVES: Pediatric COVID-19 vaccine hesitancy and uptake is not well understood. Among parents of a prospective cohort of children aged 6 months-17 years, we assessed COVID-19 vaccine knowledge, attitudes, and practices (KAP), and uptake over 15 months. METHODS: The PROTECT study collected sociodemographic characteristics of children at enrollment and COVID-19 vaccination data and parental KAPs quarterly. Univariable and multivariable logistic regression models were used to test the effect of KAPs on vaccine uptake; McNemar's test for paired samples was used to evaluate KAP change over time. RESULTS: A total of 2,837 children were enrolled, with more than half (61 %) vaccinated by October 2022. Positive parental beliefs about vaccine safety and effectiveness strongly predicted vaccine uptake among children aged 5-11 years (aOR 13.1, 95 % CI 8.5-20.4 and aOR 6.4, 95 % CI 4.3-9.6, respectively) and children aged 12+ years (aOR 7.0, 95 % CI 3.8-13.0 and aOR 8.9, 95 % CI 4.4-18.0). Compared to enrollment, at follow-up parents (of vaccinated and unvaccinated children) reported higher self-assessed vaccine knowledge, but more negative beliefs towards vaccine safety, effectiveness, and trust in government. Parents unlikely to vaccinate their children at enrollment reported more positive beliefs on vaccine knowledge, safety, and effectiveness at follow-up. CONCLUSION: The PROTECT cohort allows for an examination of factors driving vaccine uptake and how beliefs about COVID-19 and the COVID-19 vaccines change over time. Findings of the current analysis suggest that these beliefs change over time and policies aiming to increase vaccine uptake should focus on vaccine safety and effectiveness.


Subject(s)
COVID-19 , Vaccines , Humans , Child , COVID-19 Vaccines , Cohort Studies , Prospective Studies , COVID-19/prevention & control , Health Knowledge, Attitudes, Practice , Parents , Vaccination , Perception
4.
JAMA ; 331(5): 408-416, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38319331

ABSTRACT

Importance: Bivalent mRNA COVID-19 vaccines were recommended in the US for children and adolescents aged 12 years or older on September 1, 2022, and for children aged 5 to 11 years on October 12, 2022; however, data demonstrating the effectiveness of bivalent COVID-19 vaccines are limited. Objective: To assess the effectiveness of bivalent COVID-19 vaccines against SARS-CoV-2 infection and symptomatic COVID-19 among children and adolescents. Design, Setting, and Participants: Data for the period September 4, 2022, to January 31, 2023, were combined from 3 prospective US cohort studies (6 sites total) and used to estimate COVID-19 vaccine effectiveness among children and adolescents aged 5 to 17 years. A total of 2959 participants completed periodic surveys (demographics, household characteristics, chronic medical conditions, and COVID-19 symptoms) and submitted weekly self-collected nasal swabs (irrespective of symptoms); participants submitted additional nasal swabs at the onset of any symptoms. Exposure: Vaccination status was captured from the periodic surveys and supplemented with data from state immunization information systems and electronic medical records. Main Outcome and Measures: Respiratory swabs were tested for the presence of the SARS-CoV-2 virus using reverse transcriptase-polymerase chain reaction. SARS-CoV-2 infection was defined as a positive test regardless of symptoms. Symptomatic COVID-19 was defined as a positive test and 2 or more COVID-19 symptoms within 7 days of specimen collection. Cox proportional hazards models were used to estimate hazard ratios for SARS-CoV-2 infection and symptomatic COVID-19 among participants who received a bivalent COVID-19 vaccine dose vs participants who received no vaccine or monovalent vaccine doses only. Models were adjusted for age, sex, race, ethnicity, underlying health conditions, prior SARS-CoV-2 infection status, geographic site, proportion of circulating variants by site, and local virus prevalence. Results: Of the 2959 participants (47.8% were female; median age, 10.6 years [IQR, 8.0-13.2 years]; 64.6% were non-Hispanic White) included in this analysis, 25.4% received a bivalent COVID-19 vaccine dose. During the study period, 426 participants (14.4%) had laboratory-confirmed SARS-CoV-2 infection. Among these 426 participants, 184 (43.2%) had symptomatic COVID-19, 383 (89.9%) were not vaccinated or had received only monovalent COVID-19 vaccine doses (1.38 SARS-CoV-2 infections per 1000 person-days), and 43 (10.1%) had received a bivalent COVID-19 vaccine dose (0.84 SARS-CoV-2 infections per 1000 person-days). Bivalent vaccine effectiveness against SARS-CoV-2 infection was 54.0% (95% CI, 36.6%-69.1%) and vaccine effectiveness against symptomatic COVID-19 was 49.4% (95% CI, 22.2%-70.7%). The median observation time after vaccination was 276 days (IQR, 142-350 days) for participants who received only monovalent COVID-19 vaccine doses vs 50 days (IQR, 27-74 days) for those who received a bivalent COVID-19 vaccine dose. Conclusion and Relevance: The bivalent COVID-19 vaccines protected children and adolescents against SARS-CoV-2 infection and symptomatic COVID-19. These data demonstrate the benefit of COVID-19 vaccine in children and adolescents. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Child , Female , Humans , Male , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Prospective Studies , SARS-CoV-2 , mRNA Vaccines/therapeutic use , Vaccines, Combined/therapeutic use , Child, Preschool , Vaccine Efficacy , United States
5.
Environ Res ; 239(Pt 1): 117297, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37816422

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are ubiquitous throughout the United States. Previous studies have shown PFAS exposure to be associated with a reduced immune response. However, the relationship between serum PFAS and antibody levels following SARS-CoV-2 infection or COVID-19 vaccination has not been examined. We examined differences in peak immune response and the longitudinal decline of antibodies following SARS-CoV-2 infection and COVID-19 vaccination by serum PFAS levels in a cohort of essential workers in the United States. We measured serum antibodies using an in-house semi-quantitative enzyme-linked immunosorbent assay (ELISA). Two cohorts contributed blood samples following SARS-CoV-2 infection or COVID-19 vaccination. We used linear mixed regression models, adjusting for age, race/ethnicity, gender, presence of chronic conditions, location, and occupation, to estimate differences in immune response with respect to serum PFAS levels. Our study populations included 153 unvaccinated participants that contributed 316 blood draws over a 14-month period following infection, and 860 participants and 2451 blood draws over a 12-month period following vaccination. Higher perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid (PFHxS), and perfluorononanoic acid (PFNA) concentrations were associated with a lower peak antibody response after infection (p = 0.009, 0.031, 0.015). Higher PFOS, perfluorooctanoic acid (PFOA), PFHxS, and PFNA concentrations were associated with slower declines in antibodies over time after infection (p = 0.003, 0.014, 0.026, 0.025). PFOA, PFOS, PFHxS, and PFNA serum concentrations prior to vaccination were not associated with differences in peak antibody response after vaccination or with differences in decline of antibodies over time after vaccination. These results suggest that elevated PFAS may impede potential immune response to SARS-CoV-2 infection by blunting peak antibody levels following infection; the same finding was not observed for immune response to vaccination.


Subject(s)
Alkanesulfonic Acids , COVID-19 , Environmental Pollutants , Fluorocarbons , Humans , United States , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies
6.
Open Forum Infect Dis ; 10(8): ofad431, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37663086

ABSTRACT

Background: The PROTECT study is a longitudinal cohort study initiated in July 2021 with weekly testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 4 states: Arizona, Florida, exas, and Utah. This study aims to examine vaccine-elicited antibody response against postvaccination SARS-CoV-2 infections. Methods: Children aged 5-11 years had serum collected 14-59 days after their second dose of monovalent Pfizer-BioNTech coronavirus disease 2019 messenger RNA vaccine. Vaccine-elicited antibodies were measured using the area under the curve (AUC) and end-point titer using enzyme-linked immunosorbent assay (receptor-binding domain [RBD] and S2) and surrogate neutralization assays against ancestral (WA1) and Omicron (BA.2). Results: 79 vaccinated participants (33 [41.7%] female; median age, 8.8 years [standard deviation, 1.9 years]), 48 (60.8%) were from Tucson, Arizona; 64 (81.0%) were non-Hispanic white; 63 (80.8%) attended school in person; 68 (86.1%) did not have any chronic conditions; and 47 (59.5%) were infected after vaccination. Uninfected children had higher AUCs against WA1 (P = .009) and Omicron (P = .02). The geometric mean and surrogate neutralization titer above the limit of detection was 346.0 for WA1 and 39.7 for Omicron, an 8.7-fold decrease (P < .001). After adjustment of covariates in the WA1-specific model, we observed a 47% reduction in the odds of postvaccination infection for every standard deviation increase in RBD AUC (aOR, 0.53 [95% confidence interval, .29-.97) and a 69% reduction in the odds of infection for every 3-fold increase in RBD end titer (0.31 [.06-1.57]). Conclusions: Children with higher antibody levels experienced a lower incidence of postvaccination SARS-CoV-2 infection.

7.
J Occup Environ Med ; 65(8): e527-e533, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37264528

ABSTRACT

OBJECTIVE: The aim of the study is to assess risk of common musculoskeletal disorders (MSDs) based on cardiovascular disease (CVD) risk scores. METHODS: Data from a 9-year prospective cohort of 1224 workers in three states were analyzed. Baseline data included questionnaires, structured interviews, physical examinations, anthropometric measurements, nerve conduction studies, and individualized measurement of job physical factors. Monthly follow-ups were conducted. Framingham risk scores were calculated. A priori case definitions were constructed for carpal tunnel syndrome, lateral epicondylopathy, medial epicondylopathy, and rotator cuff tendinopathy. RESULTS: Adjusted RRs for one or more MSDs increased to 3.90 (95% confidence interval, 2.20-6.90) among those with 10-year cardiovascular disease risk scores greater than 15% and 17.4 (95% confidence interval, 3.85-78.62) among those with more than 4 disorders. CONCLUSIONS: Cardiovascular disease factors are strongly associated with the subsequent development of common MSDs. Risks among those with multiple MSDs are considerably stronger.


Subject(s)
Cardiovascular Diseases , Musculoskeletal Diseases , Occupational Diseases , Humans , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Prospective Studies , Cardiovascular Diseases/epidemiology , Musculoskeletal Diseases/complications , Risk Factors , Surveys and Questionnaires
8.
Emerg Infect Dis ; 29(3): 599-604, 2023 03.
Article in English | MEDLINE | ID: mdl-36703252

ABSTRACT

In a cohort of essential workers in the United States previously infected with SARS-CoV-2, risk factors for reinfection included being unvaccinated, infrequent mask use, time since first infection, and being non-Hispanic Black. Protecting workers from reinfection requires a multipronged approach including up-to-date vaccination, mask use as recommended, and reduction in underlying health disparities.


Subject(s)
COVID-19 , Reinfection , Humans , SARS-CoV-2 , Risk Factors
9.
Am J Ind Med ; 66(1): 54-64, 2023 01.
Article in English | MEDLINE | ID: mdl-36268908

ABSTRACT

BACKGROUND: Metabolic syndrome (MetS) is especially prevalent among US truck drivers. However, there has been limited research exploring associations between MetS conditions with roadway crashes among truck drivers. The objective of this paper is to assess relationships between specific combinations of individual MetS components and crashes and near-misses. METHODS: Survey, biometric, and anthropometric data were collected from 817 truck drivers across 6 diverse US states. Survey data focused on demographics and roadway safety outcomes, and anthropometric/biometric data corresponded to five MetS conditions (waist circumference blood pressure, hemoglobin A1c, triglycerides, and high-density lipoprotein [HDL] cholesterol). Logistic regression was used to calculate odds ratios of lifetime crashes and near-miss 1-month period prevalence associated with: 1) specific MetS conditions regardless of presence or absence of other MetS conditions, and 2) specific MetS conditions and counts of other accompanying MetS conditions. RESULTS: Hypertension was the MetS characteristic most strongly associated with lifetime crash and 1-month near-miss outcomes, while high triglycerides, low HDL cholesterol, and large waist circumference were most commonly present among groups of conditions associated with crashes and near-misses. Overall, an increasing number of specific co-occurring MetS conditions were associated with higher reporting of roadway crashes. CONCLUSIONS: Specific combinations and higher prevalence of MetS conditions were associated with increased frequency of reported crashes. Moreover, when the co-occurrence of MetS conditions is aggregated, a dose-response relationship with crashes appears. These results suggest that policy changes and interventions addressing MetS may increase driver health and reduce crash risk.


Subject(s)
Automobile Driving , Metabolic Syndrome , Humans , Motor Vehicles , Accidents, Traffic , Metabolic Syndrome/epidemiology , Prevalence
10.
JAMA ; 328(15): 1523-1533, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36255426

ABSTRACT

Importance: Data on the epidemiology of mild to moderately severe COVID-19 are needed to inform public health guidance. Objective: To evaluate associations between 2 or 3 doses of mRNA COVID-19 vaccine and attenuation of symptoms and viral RNA load across SARS-CoV-2 viral lineages. Design, Setting, and Participants: A prospective cohort study of essential and frontline workers in Arizona, Florida, Minnesota, Oregon, Texas, and Utah with COVID-19 infection confirmed by reverse transcriptase-polymerase chain reaction testing and lineage classified by whole genome sequencing of specimens self-collected weekly and at COVID-19 illness symptom onset. This analysis was conducted among 1199 participants with SARS-CoV-2 from December 14, 2020, to April 19, 2022, with follow-up until May 9, 2022, reported. Exposures: SARS-CoV-2 lineage (origin strain, Delta variant, Omicron variant) and COVID-19 vaccination status. Main Outcomes and Measures: Clinical outcomes included presence of symptoms, specific symptoms (including fever or chills), illness duration, and medical care seeking. Virologic outcomes included viral load by quantitative reverse transcriptase-polymerase chain reaction testing along with viral viability. Results: Among 1199 participants with COVID-19 infection (714 [59.5%] women; median age, 41 years), 14.0% were infected with the origin strain, 24.0% with the Delta variant, and 62.0% with the Omicron variant. Participants vaccinated with the second vaccine dose 14 to 149 days before Delta infection were significantly less likely to be symptomatic compared with unvaccinated participants (21/27 [77.8%] vs 74/77 [96.1%]; OR, 0.13 [95% CI, 0-0.6]) and, when symptomatic, those vaccinated with the third dose 7 to 149 days before infection were significantly less likely to report fever or chills (5/13 [38.5%] vs 62/73 [84.9%]; OR, 0.07 [95% CI, 0.0-0.3]) and reported significantly fewer days of symptoms (10.2 vs 16.4; difference, -6.1 [95% CI, -11.8 to -0.4] days). Among those with Omicron infection, the risk of symptomatic infection did not differ significantly for the 2-dose vaccination status vs unvaccinated status and was significantly higher for the 3-dose recipients vs those who were unvaccinated (327/370 [88.4%] vs 85/107 [79.4%]; OR, 2.0 [95% CI, 1.1-3.5]). Among symptomatic Omicron infections, those vaccinated with the third dose 7 to 149 days before infection compared with those who were unvaccinated were significantly less likely to report fever or chills (160/311 [51.5%] vs 64/81 [79.0%]; OR, 0.25 [95% CI, 0.1-0.5]) or seek medical care (45/308 [14.6%] vs 20/81 [24.7%]; OR, 0.45 [95% CI, 0.2-0.9]). Participants with Delta and Omicron infections who received the second dose 14 to 149 days before infection had a significantly lower mean viral load compared with unvaccinated participants (3 vs 4.1 log10 copies/µL; difference, -1.0 [95% CI, -1.7 to -0.2] for Delta and 2.8 vs 3.5 log10 copies/µL, difference, -1.0 [95% CI, -1.7 to -0.3] for Omicron). Conclusions and Relevance: In a cohort of US essential and frontline workers with SARS-CoV-2 infections, recent vaccination with 2 or 3 mRNA vaccine doses less than 150 days before infection with Delta or Omicron variants, compared with being unvaccinated, was associated with attenuated symptoms, duration of illness, medical care seeking, or viral load for some comparisons, although the precision and statistical significance of specific estimates varied.


Subject(s)
COVID-19 Vaccines , COVID-19 , Vaccination , Viral Load , Adult , Female , Humans , Male , COVID-19/diagnosis , COVID-19/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Prospective Studies , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase , SARS-CoV-2/genetics , Vaccination/statistics & numerical data , United States/epidemiology , Viral Load/drug effects , Viral Load/genetics , Viral Load/statistics & numerical data , Whole Genome Sequencing , Asymptomatic Infections/epidemiology , Asymptomatic Infections/therapy , Time Factors , Patient Acceptance of Health Care/statistics & numerical data , mRNA Vaccines
12.
J Occup Environ Med ; 64(9): 726-730, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35753081

ABSTRACT

OBJECTIVE: The aim of the study is to determine relationships between lockdowns and excess mortality, unemployment, and employment growth. METHODS: Each US states' mortality data for 2020 were compared with the prior 3 years to determine excess mortality. Data were compared using measures of lockdowns, or state openness scores and adjusted for age, sex, race/ethnicity, and cardiovascular disease. Comparisons were made with unemployment rates and employment growth rates. RESULTS: The 2020 excess mortality ranged from -9% to 46%. The average openness score was not significant ( P = 0.20). However, openness was strongly associated with both unemployment ( P = 0.01) and employment growth ( P = 0.0008). CONCLUSIONS: There was no statistical relationship between excess mortality and openness scores, while there were strong relationships with employment measures. These results suggest that lockdowns are not sufficiently beneficial for future use in this pandemic and raise concerns for use in future pandemics.


Subject(s)
COVID-19 , Unemployment , Communicable Disease Control , Employment , Humans , Mortality , Pandemics
13.
JMIR Res Protoc ; 11(7): e37929, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35635842

ABSTRACT

BACKGROUND: Assessing the real-world effectiveness of COVID-19 vaccines and understanding the incidence and severity of SARS-CoV-2 illness in children are essential to inform policy and guide health care professionals in advising parents and caregivers of children who test positive for SARS-CoV-2. OBJECTIVE: This report describes the objectives and methods for conducting the Pediatric Research Observing Trends and Exposures in COVID-19 Timelines (PROTECT) study. PROTECT is a longitudinal prospective pediatric cohort study designed to estimate SARS-CoV-2 incidence and COVID-19 vaccine effectiveness (VE) against infection among children aged 6 months to 17 years, as well as differences in SARS-CoV-2 infection and vaccine response between children and adolescents. METHODS: The PROTECT multisite network was initiated in July 2021, which aims to enroll approximately 2305 children across four US locations and collect data over a 2-year surveillance period. The enrollment target was based on prospective power calculations and accounts for expected attrition and nonresponse. Study sites recruit parents and legal guardians of age-eligible children participating in the existing Arizona Healthcare, Emergency Response, and Other Essential Workers Surveillance (HEROES)-Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) network as well as from surrounding communities. Child demographics, medical history, COVID-19 exposure, vaccination history, and parents/legal guardians' knowledge and attitudes about COVID-19 are collected at baseline and throughout the study. Mid-turbinate nasal specimens are self-collected or collected by parents/legal guardians weekly, regardless of symptoms, for SARS-CoV-2 and influenza testing via reverse transcription-polymerase chain reaction (RT-PCR) assay, and the presence of COVID-like illness (CLI) is reported. Children who test positive for SARS-CoV-2 or influenza, or report CLI are monitored weekly by online surveys to report exposure and medical utilization until no longer ill. Children, with permission of their parents/legal guardians, may elect to contribute blood at enrollment, following SARS-CoV-2 infection, following COVID-19 vaccination, and at the end of the study period. PROTECT uses electronic medical record (EMR) linkages where available, and verifies COVID-19 and influenza vaccinations through EMR or state vaccine registries. RESULTS: Data collection began in July 2021 and is expected to continue through the spring of 2023. As of April 13, 2022, 2371 children are enrolled in PROTECT. Enrollment is ongoing at all study sites. CONCLUSIONS: As COVID-19 vaccine products are authorized for use in pediatric populations, PROTECT study data will provide real-world estimates of VE in preventing infection. In addition, this prospective cohort provides a unique opportunity to further understand SARS-CoV-2 incidence, clinical course, and key knowledge gaps that may inform public health. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/37929.

15.
MMWR Morb Mortal Wkly Rep ; 71(11): 422-428, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35298453

ABSTRACT

The BNT162b2 (Pfizer-BioNTech) mRNA COVID-19 vaccine was recommended by CDC's Advisory Committee on Immunization Practices for persons aged 12-15 years (referred to as adolescents in this report) on May 12, 2021, and for children aged 5-11 years on November 2, 2021 (1-4). Real-world data on vaccine effectiveness (VE) in these age groups are needed, especially because when the B.1.1.529 (Omicron) variant became predominant in the United States in December 2021, early investigations of VE demonstrated a decline in protection against symptomatic infection for adolescents aged 12-15 years and adults* (5). The PROTECT† prospective cohort of 1,364 children and adolescents aged 5-15 years was tested weekly for SARS-CoV-2, irrespective of symptoms, and upon COVID-19-associated illness during July 25, 2021-February 12, 2022. Among unvaccinated participants (i.e., those who had received no COVID-19 vaccine doses) with any laboratory-confirmed SARS-CoV-2 infection, those with B.1.617.2 (Delta) variant infections were more likely to report COVID-19 symptoms (66%) than were those with Omicron infections (49%). Among fully vaccinated children aged 5-11 years, VE against any symptomatic and asymptomatic Omicron infection 14-82 days (the longest interval after dose 2 in this age group) after receipt of dose 2 of the Pfizer-BioNTech vaccine was 31% (95% CI = 9%-48%), adjusted for sociodemographic characteristics, health information, frequency of social contact, mask use, location, and local virus circulation. Among adolescents aged 12-15 years, adjusted VE 14-149 days after dose 2 was 87% (95% CI = 49%-97%) against symptomatic and asymptomatic Delta infection and 59% (95% CI = 22%-79%) against Omicron infection. Fully vaccinated participants with Omicron infection spent an average of one half day less sick in bed than did unvaccinated participants with Omicron infection. All eligible children and adolescents should remain up to date with recommended COVID-19 vaccinations.


Subject(s)
BNT162 Vaccine/administration & dosage , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Vaccine Efficacy , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Humans , Male , Prospective Studies , United States
16.
Occup Environ Med ; 79(7): 442-451, 2022 07.
Article in English | MEDLINE | ID: mdl-35074886

ABSTRACT

BACKGROUND: Although recent studies have identified important risk factors associated with incident carpal tunnel syndrome (CTS), risk factors associated with its severity have not been well explored. OBJECTIVE: To examine the associations between personal, workplace psychosocial and biomechanical factors and incident work disability among workers with CTS. METHODS: Between 2001 and 2010 five research groups conducted coordinated prospective studies of CTS and related work disability among US workers from various industries. Workers with prevalent or incident CTS (N=372) were followed for up to 6.4 years. Incident work disability was measured as: (1) change in work pace or work quality, (2) lost time or (3) job change following the development of CTS. Psychosocial factors were assessed by questionnaire. Biomechanical exposures were assessed by observation and measurements and included force, repetition, duty cycle and posture. HRs were estimated using Cox models. RESULTS: Disability incidence rates per 100 person-years were 33.2 for changes in work pace or quality, 16.3 for lost time and 20.0 for job change. There was a near doubling of risk for job change among those in the upper tertile of the Hand Activity Level Scale (HR 2.17; 95% CI 1.17 to 4.01), total repetition rate (HR 1.75; 95% CI 1.02 to 3.02), % time spent in all hand exertions (HR 2.20; 95% CI 1.21 to 4.01) and a sixfold increase for high job strain. Sensitivity analyses indicated attenuation due to inclusion of the prevalent CTS cases. CONCLUSION: Personal, biomechanical and psychosocial job factors predicted CTS-related disability. Results suggest that prevention of severe disability requires a reduction of both biomechanical and organisational work stressors.


Subject(s)
Carpal Tunnel Syndrome , Occupational Diseases , Carpal Tunnel Syndrome/epidemiology , Carpal Tunnel Syndrome/etiology , Humans , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Occupational Diseases/prevention & control , Prospective Studies , Risk Factors , Workplace/psychology
17.
Influenza Other Respir Viruses ; 16(3): 585-593, 2022 05.
Article in English | MEDLINE | ID: mdl-35023288

ABSTRACT

BACKGROUND: We sought to evaluate the impact of changes in estimates of COVID-19 vaccine effectiveness on the incidence of laboratory-confirmed infection among frontline workers at high risk for SARS-CoV-2. METHODS: We analyzed data from a prospective frontline worker cohort to estimate the incidence of COVID-19 by month as well as the association of COVID-19 vaccination, occupation, demographics, physical distancing, and mask use with infection risk. Participants completed baseline and quarterly surveys, and each week self-collected mid-turbinate nasal swabs and reported symptoms. RESULTS: Among 1018 unvaccinated and 3531 fully vaccinated workers, the monthly incidence of laboratory-confirmed SARS-CoV-2 infection in January 2021 was 13.9 (95% confidence interval [CI]: 10.4-17.4), declining to 0.5 (95% CI -0.4-1.4) per 1000 person-weeks in June. By September 2021, when the Delta variant predominated, incidence had once again risen to 13.6 (95% CI 7.8-19.4) per 1000 person-weeks. In contrast, there was no reportable incidence among fully vaccinated participants at the end of January 2021, and incidence remained low until September 2021 when it rose modestly to 4.1 (95% CI 1.9-3.8) per 1000. Below average facemask use was associated with a higher risk of infection for unvaccinated participants during exposure to persons who may have COVID-19 and vaccinated participants during hours in the community. CONCLUSIONS: COVID-19 vaccination was significantly associated with a lower risk of SARS-CoV-2 infection despite Delta variant predominance. Our data demonstrate the added protective benefit of facemask use among both unvaccinated and vaccinated frontline workers.


Subject(s)
COVID-19 , Emergency Responders , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Delivery of Health Care , Humans , Incidence , Prospective Studies , SARS-CoV-2/genetics , Vaccination
19.
Hum Factors ; 64(6): 973-996, 2022 09.
Article in English | MEDLINE | ID: mdl-33300376

ABSTRACT

OBJECTIVE: To examine differences in demographic, psychosocial, and job physical exposure risk factors between multiple low back pain (LBP) outcomes in a prospective cohort of industrial workers. BACKGROUND: LBP remains a leading cause of lost industrial productivity. Different case definitions involving pain (general LBP), medication use (M-LBP), seeking healthcare (H-LBP), and lost time (L-LBP) are often used to study LBP outcomes. However, the relationship between these outcomes remains unclear. METHOD: Demographic, health status, psychosocial, and job physical exposure risk factors were quantified for 635 incident-eligible industrial workers. Incident cases of LBP outcomes and pain symptoms were quantified and compared across the four outcomes. RESULTS: Differences in age, gender, medical history, and LBP history were found between the four outcomes. Most incident-eligible workers (67%) suffered an LBP outcome during follow-up. Cases decreased from 420 for LBP (25.4 cases/100 person-years) to 303 for M-LBP (22.0 cases/100 person-years), to 151 for H-LBP (15.6 cases/100 person-years), and finally to 56 for L-LBP (8.7 cases/100 person-years). Conversely, pain intensity and duration increased from LBP to H-LBP. However, pain duration was relatively lower for L-LBP than for H-LBP. CONCLUSION: Patterns of cases, pain intensity, and pain duration suggest the influence of the four outcomes. However, few differences in apparent risk factors were observed between the outcomes. Further research is needed to establish consistent case definitions. APPLICATION: Knowledge of patterns between different LBP outcomes can improve interpretation of research and guide future research and intervention studies in industry.


Subject(s)
Low Back Pain , Occupational Diseases , Demography , Humans , Low Back Pain/epidemiology , Low Back Pain/etiology , Occupational Diseases/diagnosis , Prospective Studies , Risk Factors , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL