Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Immunity ; 57(8): 1975-1993.e10, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39047731

ABSTRACT

Tissue adaptation is required for regulatory T (Treg) cell function within organs. Whether this program shares aspects with other tissue-localized immune populations is unclear. Here, we analyzed single-cell chromatin accessibility data, including the transposable element (TE) landscape of CD45+ immune cells from colon, skin, adipose tissue, and spleen. We identified features of organ-specific tissue adaptation across different immune cells. Focusing on tissue Treg cells, we found conservation of the Treg tissue adaptation program in other tissue-localized immune cells, such as amphiregulin-producing T helper (Th)17 cells. Accessible TEs can act as regulatory elements, but their contribution to tissue adaptation is not understood. TE landscape analysis revealed an enrichment of specific transcription factor binding motifs in TE regions within accessible chromatin peaks. TEs, specifically from the LTR family, were located in enhancer regions and associated with tissue adaptation. These findings broaden our understanding of immune tissue residency and provide an important step toward organ-specific immune interventions.


Subject(s)
Chromatin , DNA Transposable Elements , Single-Cell Analysis , T-Lymphocytes, Regulatory , Animals , Chromatin/metabolism , Chromatin/genetics , T-Lymphocytes, Regulatory/immunology , DNA Transposable Elements/genetics , Mice , Organ Specificity/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Mice, Inbred C57BL , Humans
2.
J Exp Med ; 221(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226976

ABSTRACT

CD8 T lymphocytes are classically viewed as cytotoxic T cells. Whether human CD8 T cells can, in parallel, induce a tissue regeneration program is poorly understood. Here, antigen-specific assay systems revealed that human CD8 T cells not only mediated cytotoxicity but also promoted tissue remodeling. Activated CD8 T cells could produce the epidermal growth factor receptor (EGFR)-ligand amphiregulin (AREG) and sensitize epithelial cells for enhanced regeneration potential. Blocking the EGFR or the effector cytokines IFN-γ and TNF could inhibit tissue remodeling. This regenerative program enhanced tumor spheroid and stem cell-mediated organoid growth. Using single-cell gene expression analysis, we identified an AREG+, tissue-resident CD8 T cell population in skin and adipose tissue from patients undergoing abdominal wall or abdominoplasty surgery. These tissue-resident CD8 T cells showed a strong TCR clonal relation to blood PD1+TIGIT+ CD8 T cells with tissue remodeling abilities. These findings may help to understand the complex CD8 biology in tumors and could become relevant for the design of therapeutic T cell products.


Subject(s)
CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Humans , ErbB Receptors , Adipose Tissue , Cell Cycle
3.
Trends Immunol ; 44(6): 468-483, 2023 06.
Article in English | MEDLINE | ID: mdl-37100644

ABSTRACT

Regulatory T (Treg) cells ensure tolerance against self-antigens, limit excessive inflammation, and support tissue repair processes. Therefore, Treg cells are currently attractive candidates for the treatment of certain inflammatory diseases, autoimmune disorders, or transplant rejection. Early clinical trials have proved the safety and efficacy of certain Treg cell therapies in inflammatory diseases. We summarize recent advances in engineering Treg cells, including the concept of biosensors for inflammation. We assess Treg cell engineering possibilities for novel functional units, including Treg cell modifications influencing stability, migration, and tissue adaptation. Finally, we outline perspectives of engineered Treg cells going beyond inflammatory diseases by using custom-designed receptors and read-out systems, aiming to use Treg cells as in vivo diagnostic tools and drug delivery vehicles.


Subject(s)
Autoimmune Diseases , T-Lymphocytes, Regulatory , Humans , Autoimmune Diseases/therapy , Immune Tolerance , Immunotherapy, Adoptive , Inflammation/therapy
5.
Cancer Cell ; 40(12): 1600-1618.e10, 2022 12 12.
Article in English | MEDLINE | ID: mdl-36423635

ABSTRACT

The lack of T cell infiltrates is a major obstacle to effective immunotherapy in cancer. Conversely, the formation of tumor-associated tertiary-lymphoid-like structures (TA-TLLSs), which are the local site of humoral and cellular immune responses against cancers, is associated with good prognosis, and they have recently been detected in immune checkpoint blockade (ICB)-responding patients. However, how these lymphoid aggregates develop remains poorly understood. By employing single-cell transcriptomics, endothelial fate mapping, and functional multiplex immune profiling, we demonstrate that antiangiogenic immune-modulating therapies evoke transdifferentiation of postcapillary venules into inflamed high-endothelial venules (HEVs) via lymphotoxin/lymphotoxin beta receptor (LT/LTßR) signaling. In turn, tumor HEVs boost intratumoral lymphocyte influx and foster permissive lymphocyte niches for PD1- and PD1+TCF1+ CD8 T cell progenitors that differentiate into GrzB+PD1+ CD8 T effector cells. Tumor-HEVs require continuous CD8 and NK cell-derived signals revealing that tumor HEV maintenance is actively sculpted by the adaptive immune system through a feed-forward loop.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Venules/pathology , Immunotherapy , Lymph Nodes , Neoplasms/pathology
7.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161919

ABSTRACT

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Subject(s)
Biosensing Techniques , Cell Engineering , Cell- and Tissue-Based Therapy , Inflammation , T-Lymphocytes, Regulatory , Animals , CD28 Antigens/metabolism , Humans , Inflammation/therapy , Ligands , Lymphotoxin beta Receptor/metabolism , Mice , Receptors, Antigen, T-Cell/metabolism , Receptors, Tumor Necrosis Factor/metabolism , T-Lymphocytes, Regulatory/transplantation , Tumor Necrosis Factor-alpha
8.
Nat Commun ; 13(1): 2027, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440118

ABSTRACT

Innate lymphoid cells (ILCs) govern immune cell homeostasis in the intestine and protect the host against microbial pathogens. Various cell-intrinsic pathways have been identified that determine ILC development and differentiation. However, the cellular components that regulate ILC sustenance and function in the intestinal lamina propria are less known. Using single-cell transcriptomic analysis of lamina propria fibroblasts, we identify fibroblastic reticular cells (FRCs) that underpin cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Genetic ablation of lymphotoxin-ß receptor expression in Ccl19-expressing FRCs blocks the maturation of CPs into mature ILFs. Interactome analysis shows the major niche factors and processes underlying FRC-ILC crosstalk. In vivo validation confirms that a sustained lymphotoxin-driven feedforward loop of FRC activation including IL-7 generation is critical for the maintenance of functional ILC populations. In sum, our study indicates critical fibroblastic niches within the intestinal lamina propria that control ILC homeostasis and functionality and thereby secure protective gut immunity.


Subject(s)
Immunity, Innate , Lymphocytes , Fibroblasts , Homeostasis , Intestines
9.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35358427

ABSTRACT

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Subject(s)
Endothelial Cells , Endothelial Cells/metabolism , Lymph Nodes , Sequence Analysis, RNA , Single-Cell Analysis , Stromal Cells , Transcription Factors/metabolism
10.
Immunobiology ; 227(2): 152186, 2022 03.
Article in English | MEDLINE | ID: mdl-35131544

ABSTRACT

In this study, we have identified Interferon-stimulated genes (ISGs), especially IFIT1, 2 and 3, as target genes of propionate-induced signalling in the human epithelial cell line A549, the monocytic cell line THP-1 as well as in primary, human peripheral blood-derived macrophages (PBMs). Induction of the IFIT gene family by propionate negatively regulates TLR-induced signalling. Propionate stimulation results in downregulation of pro-inflammatory cytokine and chemokine expression as well as MHC class II expression upon TLR1/2 and TLR4 re-stimulation in A549 and THP-1 cells as well as in PBMs, demonstrating that propionate-induced signalling is involved in the induction of TLR cross-tolerance. Signalling pathway analysis clearly demonstrates that propionate-induced IFIT expression is mediated by FFAR2 in a Gαq/11 signalling pathway-dependent manner. Furthermore, propionate-induced IFIT expression is dependent on IFN type I and/or type III-mediated signalling since pre-treatment of A549 cells with Ruxolitinib, a specific JAK1/2 tyrosine kinase inhibitor, prior to stimulation with propionate, inhibited the upregulation of IFIT1 expression. The hypo-responsiveness towards TLR1/2 and TLR4 agonists seems to be mediated by different members of the IFIT gene family in a cell type-specific manner. Collectively, our data indicate that propionate-induced signalling controls pro-inflammatory responses by activation of IFN type I and/or type III-induced and IFIT-mediated counter-regulatory mechanisms in order to protect against exacerbating inflammatory reactions.


Subject(s)
Adaptor Proteins, Signal Transducing , Propionates , RNA-Binding Proteins , Toll-Like Receptor 1 , Toll-Like Receptor 2 , Toll-Like Receptor 4 , A549 Cells , Adaptor Proteins, Signal Transducing/metabolism , Humans , Propionates/pharmacology , RNA-Binding Proteins/metabolism , THP-1 Cells , Toll-Like Receptor 1/agonists , Toll-Like Receptor 2/agonists , Toll-Like Receptor 4/agonists
11.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Article in English | MEDLINE | ID: mdl-35031565

ABSTRACT

CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTß) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTßR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTßR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTßR and RANK with implications for the immune response.


Subject(s)
Lymph Nodes/immunology , Lymphotoxin beta Receptor/metabolism , Macrophages/immunology , Macrophages/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Signal Transduction , Spleen/immunology , B-Lymphocytes/immunology , RANK Ligand/metabolism , Stromal Cells/metabolism
12.
Biol Chem ; 402(9): 1147-1154, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34087963

ABSTRACT

Lymphotoxin-ß-receptor deficient (LTßR-/-) and Tumor Necrosis Factor Receptor p55 deficient (TNFRp55-/-) mice show defects in liver regeneration (LR) after partial hepatectomy (PHx) with significantly increased mortality. LTßR and TNFRp55 belong to the core members of the TNF/TNFR superfamily. Interestingly, combined failure of LTßR and TNFRp55 signaling after PHx leads to a complete defect in LR. Here, we first addressed the question which liver cell population crucially requires LTßR signaling for efficient LR. To this end, mice with a conditionally targeted LTßR allele (LTßRfl/fl) were crossed to AlbuminCre and LysozymeMCre mouse lines to unravel the function of the LTßR on hepatocytes and monocytes/macrophages/Kupffer cells, respectively. Analysis of these mouse lines clearly reveals that LTßR is required on hepatocytes for efficient LR while no deficit in LR was found in LTßRfl/fl × LysMCre mice. Second, the molecular basis for the cooperating role of LTßR and TNFRp55 signaling pathways in LR was investigated by transcriptome analysis of etanercept treated LTßR-/- (LTßR-/-/ET) mice. Bioinformatic analysis and subsequent verification by qRT-PCR identified novel target genes (Cyclin-L2, Fas-Binding factor 1, interferon-related developmental regulator 1, Leucyl-tRNA Synthetase 2, and galectin-4) that are upregulated by LTßR/TNFRp55 signaling after PHx and fail to be upregulated after PHx in LTßR-/-/ET mice.


Subject(s)
Liver Regeneration , Animals , Hepatectomy , Hepatocytes , Lymphotoxin-beta , Signal Transduction
13.
Immunity ; 54(4): 702-720.e17, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33789089

ABSTRACT

Murine regulatory T (Treg) cells in tissues promote tissue homeostasis and regeneration. We sought to identify features that characterize human Treg cells with these functions in healthy tissues. Single-cell chromatin accessibility profiles of murine and human tissue Treg cells defined a conserved, microbiota-independent tissue-repair Treg signature with a prevailing footprint of the transcription factor BATF. This signature, combined with gene expression profiling and TCR fate mapping, identified a population of tissue-like Treg cells in human peripheral blood that expressed BATF, chemokine receptor CCR8 and HLA-DR. Human BATF+CCR8+ Treg cells from normal skin and adipose tissue shared features with nonlymphoid T follicular helper-like (Tfh-like) cells, and induction of a Tfh-like differentiation program in naive human Treg cells partially recapitulated tissue Treg regenerative characteristics, including wound healing potential. Human BATF+CCR8+ Treg cells from healthy tissue share features with tumor-resident Treg cells, highlighting the importance of understanding the context-specific functions of these cells.


Subject(s)
Chromatin/immunology , T-Lymphocytes, Regulatory/immunology , Wound Healing/immunology , Adult , Animals , Basic-Leucine Zipper Transcription Factors/immunology , Cell Differentiation/immunology , Cell Line , Female , Gene Expression Profiling/methods , Gene Expression Regulation/immunology , HaCaT Cells , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Receptors, CCR8/immunology , T Follicular Helper Cells/immunology
14.
Immunity ; 53(5): 1015-1032.e8, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33207209

ABSTRACT

Solitary intestinal lymphoid tissues such as cryptopatches (CPs) and isolated lymphoid follicles (ILFs) constitute steady-state activation hubs containing group 3 innate lymphoid cells (ILC3) that continuously produce interleukin (IL)-22. The outer surface of CPs and ILFs is demarcated by a poorly characterized population of CD11c+ cells. Using genome-wide single-cell transcriptional profiling of intestinal mononuclear phagocytes and multidimensional flow cytometry, we found that CP- and ILF-associated CD11c+ cells were a transcriptionally distinct subset of intestinal cDCs, which we term CIA-DCs. CIA-DCs required programming by CP- and ILF-resident CCR6+ ILC3 via lymphotoxin-ß receptor signaling in cDCs. CIA-DCs differentially expressed genes associated with immunoregulation and were the major cellular source of IL-22 binding protein (IL-22BP) at steady state. Mice lacking CIA-DC-derived IL-22BP exhibited diminished expression of epithelial lipid transporters, reduced lipid resorption, and changes in body fat homeostasis. Our findings provide insight into the design principles of an immunoregulatory checkpoint controlling nutrient absorption.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Peyer's Patches/cytology , Peyer's Patches/immunology , Receptors, Interleukin/biosynthesis , Animals , Biomarkers , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Immunophenotyping , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Lipid Metabolism , Mice , Mice, Transgenic , RNA, Small Cytoplasmic/genetics , Receptors, Interleukin/genetics , Signal Transduction
15.
Cancer Res ; 80(6): 1316-1329, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31932457

ABSTRACT

Tumor-induced remodeling of the microenvironment relies on the formation of blood vessels, which go beyond the regulation of metabolism, shaping a maladapted survival niche for tumor cells. In high-grade B-cell lymphoma, angiogenesis correlates with poor prognosis, but attempts to target established proangiogenic pathways within the vascular niche have been inefficient. Here, we analyzed Myc-driven B-cell lymphoma-induced angiogenesis in mice. A few lymphoma cells were sufficient to activate the angiogenic switch in lymph nodes. A unique morphology of dense microvessels emerged without obvious tip cell guidance and reliance on blood endothelial cell (BEC) proliferation. The transcriptional response of BECs was inflammation independent. Conventional HIF1α or Notch signaling routes prevalent in solid tumors were not activated. Instead, a nonconventional hypersprouting morphology was orchestrated by lymphoma-provided VEGFC and lymphotoxin (LT). Interference with VEGF receptor-3 and LTß receptor signaling pathways abrogated lymphoma angiogenesis, thus revealing targets to block lymphomagenesis. SIGNIFICANCE: In lymphoma, transcriptomes and morphogenic patterns of the vasculature are distinct from processes in inflammation and solid tumors. Instead, LTßR and VEGFR3 signaling gain leading roles and are targets for lymphomagenesis blockade.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/80/6/1316/F1.large.jpg.


Subject(s)
Lymphoma/pathology , Lymphotoxin beta Receptor/metabolism , Neovascularization, Pathologic/pathology , Vascular Endothelial Growth Factor Receptor-3/metabolism , Animals , Biopsy , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Gene Expression Profiling , Human Umbilical Vein Endothelial Cells , Humans , Indoles/administration & dosage , Lymph Nodes/blood supply , Lymph Nodes/pathology , Lymphoma/drug therapy , Lymphoma/genetics , Lymphotoxin-alpha/metabolism , Mice , Mice, Transgenic , Naphthalenes/administration & dosage , Naphthyridines/administration & dosage , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/antagonists & inhibitors , Xenograft Model Antitumor Assays
16.
Nat Commun ; 10(1): 1739, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988302

ABSTRACT

The splenic white pulp is underpinned by poorly characterized stromal cells that demarcate distinct immune cell microenvironments. Here we establish fibroblastic reticular cell (FRC)-specific fate-mapping in mice to define their embryonic origin and differentiation trajectories. Our data show that all reticular cell subsets descend from multipotent progenitors emerging at embryonic day 19.5 from periarterial progenitors. Commitment of FRC progenitors is concluded during the first week of postnatal life through occupation of niches along developing central arterioles. Single cell transcriptomic analysis facilitated deconvolution of FRC differentiation trajectories and indicated that perivascular reticular cells function both as adult lymphoid organizer cells and mural cell progenitors. The lymphotoxin-ß receptor-independent sustenance of postnatal progenitor stemness unveils that systemic immune surveillance in the splenic white pulp is governed through subset specification of reticular cells from a multipotent periarterial progenitor cell. In sum, the finding that discrete signaling events in perivascular niches determine the differentiation trajectories of reticular cell networks explains the development of distinct microenvironmental niches in secondary and tertiary lymphoid tissues that are crucial for the induction and regulation of innate and adaptive immune processes.


Subject(s)
Cell Lineage , Cellular Microenvironment , Fibroblasts/physiology , Animals , Cell Differentiation , Gene Expression Profiling , Immunologic Surveillance , Lymphocytes , Mice , Spleen
17.
Front Immunol ; 8: 1471, 2017.
Article in English | MEDLINE | ID: mdl-29163535

ABSTRACT

TNF receptor type 2 (TNFR2) has gained attention as a costimulatory receptor for T cells and as critical factor for the development of regulatory T cells (Treg) and myeloid suppressor cells. Using the TNFR2-specific agonist TNCscTNF80, direct effects of TNFR2 activation on myeloid cells and T cells were investigated in mice. In vitro, TNCscTNF80 induced T cell proliferation in a costimulatory fashion, and also supported in vitro expansion of Treg cells. In addition, activation of TNFR2 retarded differentiation of bone marrow-derived immature myeloid cells in culture and reduced their suppressor function. In vivo application of TNCscTNF80-induced mild myelopoiesis in naïve mice without affecting the immune cell composition. Already a single application expanded Treg cells and improved suppression of CD4 T cells in mice with chronic inflammation. By contrast, multiple applications of the TNFR2 agonist were required to expand Treg cells in naïve mice. Improved suppression of T cell proliferation depended on expression of TNFR2 by T cells in mice repeatedly treated with TNCscTNF80, without a major contribution of TNFR2 on myeloid cells. Thus, TNFR2 activation on T cells in naïve mice can lead to immune suppression in vivo. These findings support the important role of TNFR2 for Treg cells in immune regulation.

18.
PLoS One ; 12(9): e0185265, 2017.
Article in English | MEDLINE | ID: mdl-28934349

ABSTRACT

Intestinal microbiota disruption is associated with acute gastrointestinal (GI) Graft-versus-Host Disease (GvHD) and poor outcome after allogeneic stem cell transplantation (ASCT). Here, in a retrospective analysis of 200 patients undergoing ASCT at the Regensburg University Medical Center, we assessed the relative expression of Paneth cell antimicrobial peptides (AMPs), Human Defensins (HD) 5 and 6 and regenerating islet-derived 3α (Reg3α), in 292 human intestinal biopsies as well as Reg3α serum levels in relation to acute GI GvHD. In the absence of GI GvHD, the relative expression of Paneth cell AMPs was significantly higher in the small intestine (duodenum to ileum) than in the stomach and large intestine (cecum to rectum) for Reg3α (p≤0.001), HD5 (p≤0.002) and HD6 (p≤0.02). Acute stage 2-4 GI GvHD was associated with reduced expression of AMPs in the small intestine (p≤0.01) in comparison to stage 0-1 disease, accompanied by a decrease in Paneth cell count in case of severe acute GI GvHD (p<0.001). The opposite held true for the large intestine as we found stage 2-4 GI GvHD correlated with significantly higher expression of HD5, HD6, and Reg3α compared to mild or no acute GI GvHD (p≤0.002). Severe GI GvHD in both the lower and the upper GI tract also correlated with higher serum concentrations of Reg3α (p = 0.002). As indirect markers of intestinal microbiome diversity low levels of urinary 3-indoxyl sulfate levels were associated with severe stages of acute GI GvHD compared to mild stage or no acute GI GvHD (p = 0.05). In conclusion, acute GI GvHD correlates with intestinal expression of HD5, HD6 and Reg3α as well as Reg3α serum levels and is associated with intestinal dysbiosis.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Gastrointestinal Tract/metabolism , Gene Expression Regulation , Graft vs Host Disease/metabolism , Graft vs Host Disease/therapy , Stem Cell Transplantation , Acute Disease , Adult , Biodiversity , Graft vs Host Disease/microbiology , Graft vs Host Disease/surgery , Humans , Microbiota , Retrospective Studies , Transplantation, Homologous
19.
Immunity ; 47(1): 80-92.e4, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28709801

ABSTRACT

Lymph nodes (LNs) are strategically situated throughout the body at junctures of the blood vascular and lymphatic systems to direct immune responses against antigens draining from peripheral tissues. The current paradigm describes LN development as a programmed process that is governed through the interaction between mesenchymal lymphoid tissue organizer (LTo) cells and hematopoietic lymphoid tissue inducer (LTi) cells. Using cell-type-specific ablation of key molecules involved in lymphoid organogenesis, we found that initiation of LN development is dependent on LTi-cell-mediated activation of lymphatic endothelial cells (LECs) and that engagement of mesenchymal stromal cells is a succeeding event. LEC activation was mediated mainly by signaling through receptor activator of NF-κB (RANK) and the non-canonical NF-κB pathway and was steered by sphingosine-1-phosphate-receptor-dependent retention of LTi cells in the LN anlage. Finally, the finding that pharmacologically enforced interaction between LTi cells and LECs promotes ectopic LN formation underscores the central LTo function of LECs.


Subject(s)
Endothelial Cells/physiology , Lymph Nodes/physiology , Mesenchymal Stem Cells/physiology , Organogenesis , Animals , Cell Differentiation , Cells, Cultured , Choristoma , Embryo, Mammalian , Lymphotoxin beta Receptor/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-kappa B/metabolism , Receptor Activator of Nuclear Factor-kappa B/metabolism , Receptors, Lysosphingolipid/metabolism , Signal Transduction
20.
Immunobiology ; 221(11): 1259-65, 2016 11.
Article in English | MEDLINE | ID: mdl-27377709

ABSTRACT

Our previous results indicate that HBD2 and HBD3 are chemotactic for a broad spectrum of leukocytes in a CCR6- and CCR2-dependent manner. In this study we report that pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3 results in a synergistic, enhanced expression of pro-inflammatory cytokines and chemokines induced by TLR ligand re-stimulation. Experiments using specific inhibitors of the ATP-gated channel receptor P2X7 or its functional ligand ATP, suggest that the enhanced expression of pro-inflammatory cytokines and chemokines seems to be mediated by P2X7R. Furthermore, our data provide evidence that beta-defensins do not directly interact with P2X7R but rather induce the release of intracellular ATP. Interference with ATP release abrogated the synergistic effect mediated by HBD2 and HBD3 pre-stimulation in THP-1 cells. However, extracellular ATP alone seems not to be sufficient to elicit the enhanced synergistic effect on cytokine and chemokine expression observed by pre-stimulation of primary human macrophages or THP-1 cells with HBD2 or HBD3. Collectively, our findings provide new insights into the molecular mechanisms how HBD2 and HBD3 interact with cells of myeloid origin and demonstrate their immuno-modulating functions during innate immune responses.


Subject(s)
Adenosine Triphosphate/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Receptors, Purinergic P2X7/metabolism , Toll-Like Receptors/metabolism , beta-Defensins/metabolism , Biomarkers , Cell Line , Cytokines/genetics , Gene Expression , Humans , Immunity, Innate , Immunomodulation , Ligands , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Monocytes/immunology , Monocytes/metabolism , Toll-Like Receptors/agonists
SELECTION OF CITATIONS
SEARCH DETAIL