Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Article in English | MEDLINE | ID: mdl-38947124

ABSTRACT

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Subject(s)
Biofilms , Klebsiella Infections , Klebsiella pneumoniae , Temperature , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Klebsiella pneumoniae/classification , Biofilms/growth & development , Virulence/genetics , Animals , Klebsiella Infections/microbiology , Larva/microbiology , Plasmids/genetics , Moths/microbiology , Humans , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lepidoptera/microbiology , Viscosity , Phenotype , Gene Expression Profiling
2.
Front Cell Infect Microbiol ; 14: 1372704, 2024.
Article in English | MEDLINE | ID: mdl-38601740

ABSTRACT

In this study, we characterized a Klebsiella pneumoniae strain in a patient with shrapnel hip injury, which resulted in multiple phenotypic changes, including the formation of a small colony variant (SCV) phenotype. Although already described since the 1960s, there is little knowledge about SCV phenotypes in Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial strategy to evade host immune responses and compromise the efficacy of antimicrobial therapies, leading to persistent and recurrent courses of infections. In this case, 14 isolates with different resisto- and morpho-types were distinguished from the patient's urine and tissue samples. Whole genome sequencing revealed that all isolates were clonally identical belonging to the K. pneumoniae high-risk sequence type 147. Subculturing the SCV colonies consistently resulted in the reappearance of the initial SCV phenotype and three stable normal-sized phenotypes with distinct morphological characteristics. Additionally, an increase in resistance was observed over time in isolates that shared the same colony appearance. Our findings highlight the complexity of bacterial behavior by revealing a case of phenotypic "hyper-splitting" in a K. pneumoniae SCV and its potential clinical significance.


Subject(s)
Klebsiella Infections , Klebsiella pneumoniae , Humans , Klebsiella pneumoniae/genetics , Phenotype , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella Infections/microbiology
3.
JAC Antimicrob Resist ; 6(2): dlae021, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38449514

ABSTRACT

Background: MDR pathogens including ESBL- and/or carbapenemase-producing Enterobacterales (ESBL-PE and CPE) increasingly occur worldwide in the One Health context. Objectives: This proof-of-principle study investigated the occurrence of ESBL-PE in surface water in the Ashanti Region in Ghana, sub-Saharan Africa (SSA), and investigated their additional genotypic and phenotypic antimicrobial resistance features as part of the Surveillance Outbreak Response Management and Analysis System (SORMAS). Methods: From 75 water samples overall, from nine small to medium-sized river streams and one pond spatially connected to a channelled water stream in the greater area of Kumasi (capital of the Ashanti Region in Ghana) in 2021, we isolated 121 putative ESBL-PE that were subsequently subjected to in-depth genotypic and phenotypic analysis. Results: Of all 121 isolates, Escherichia coli (70.25%) and Klebsiella pneumoniae (23.14%) were the most prevalent bacterial species. In addition to ESBL enzyme-production of mostly the CTX-M-15 type, one-fifth of the isolates carried carbapenemase genes including blaNDM-5. More importantly, susceptibility testing not only confirmed phenotypic carbapenem resistance, but also revealed two isolates resistant to the just recently approved last-resort antibiotic cefiderocol. In addition, we detected several genes associated with heavy metal resistance. Conclusions: ESBL-PE and CPE occur in surface water sources in and around Kumasi in Ghana. Further surveillance and research are needed to not only improve our understanding of their exact prevalence and the reservoir function of water sources in SSA but should include the investigation of cefiderocol-resistant isolates.

SELECTION OF CITATIONS
SEARCH DETAIL