Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Acta Cir Bras ; 31(1): 1-7, 2016 Jan.
Article En | MEDLINE | ID: mdl-26840349

PURPOSE: To evaluate the effect of ischemic preconditioning on mortality, inflammatory mediators and oxidative stress after intestinal ischemia and reperfusion. METHODS: Male Wistar rats were allocated according to the period of ischemia with or without ischemic preconditioning which consist on clamping the superior mesenteric artery for 10 minutes followed by reperfusion for 10 minutes before the sustained ischemia period. Mortality was assessed in Phase 1 study, and the CINC-1, CINC-2 and MDA levels in the lungs were analyzed in Phase 2. RESULTS: Mortality was lower in the ischemic preconditioning group subjected to 90 minutes of ischemia compared to the group without ischemic preconditioning (I-90: 50% and IPC-90: 15%, p=0.018), and it was lower in the ischemic preconditioning group as a whole compared to the groups without ischemic preconditioning (IPC-14% and I=30%, p=0.006). Lower levels of MDA, CINC-1, and CINC-2 were observed in the animals that were subjected to ischemic preconditioning compared to the animals that were not (MDA: I-45=1.23 nmol/mg protein, and IPC-45=0.62 nmol/mg protein, p=0.0333; CINC-1: I-45=0.82 ng/mL and IPC-45=0.67 ng/mL, p=0.041; CINC-2: I-45=0.52 ng/mL and IPC-45=0.35 ng/mL, p=0.032). CONCLUSION: Ischemic preconditioning reduces mortality, inflammatory process and oxidative stress in rats subjected to intestinal ischemia and reperfusion.


Inflammation Mediators/metabolism , Ischemic Preconditioning/mortality , Mesenteric Ischemia/metabolism , Oxidative Stress/immunology , Reperfusion Injury/mortality , Animals , Chemokine CXCL1/analysis , Chemokines, CXC/analysis , Enzyme-Linked Immunosorbent Assay , Lung/metabolism , Lung/physiopathology , Male , Malondialdehyde/analysis , Mesenteric Arteries/metabolism , Mesenteric Ischemia/mortality , Rats, Wistar , Statistics, Nonparametric
2.
Acta cir. bras ; 31(1): 1-7, Jan. 2016. graf
Article En | LILACS | ID: lil-771855

PURPOSE: To evaluate the effect of ischemic preconditioning on mortality, inflammatory mediators and oxidative stress after intestinal ischemia and reperfusion. METHODS: Male Wistar rats were allocated according to the period of ischemia with or without ischemic preconditioning which consist on clamping the superior mesenteric artery for 10 minutes followed by reperfusion for 10 minutes before the sustained ischemia period. Mortality was assessed in Phase 1 study, and the CINC-1, CINC-2 and MDA levels in the lungs were analyzed in Phase 2. RESULTS: Mortality was lower in the ischemic preconditioning group subjected to 90 minutes of ischemia compared to the group without ischemic preconditioning (I-90: 50% and IPC-90: 15%, p=0.018), and it was lower in the ischemic preconditioning group as a whole compared to the groups without ischemic preconditioning (IPC-14% and I=30%, p=0.006). Lower levels of MDA, CINC-1, and CINC-2 were observed in the animals that were subjected to ischemic preconditioning compared to the animals that were not (MDA: I-45=1.23 nmol/mg protein, and IPC-45=0.62 nmol/mg protein, p=0.0333; CINC-1: I-45=0.82 ng/mL and IPC-45=0.67 ng/mL, p=0.041; CINC-2: I-45=0.52 ng/mL and IPC-45=0.35 ng/mL, p=0.032). CONCLUSION: Ischemic preconditioning reduces mortality, inflammatory process and oxidative stress in rats subjected to intestinal ischemia and reperfusion.


Animals , Male , Inflammation Mediators/metabolism , Ischemic Preconditioning/mortality , Mesenteric Ischemia/metabolism , Oxidative Stress/immunology , Reperfusion Injury/mortality , Chemokine CXCL1/analysis , Chemokines, CXC/analysis , Enzyme-Linked Immunosorbent Assay , Lung/metabolism , Lung/physiopathology , Malondialdehyde/analysis , Mesenteric Arteries/metabolism , Mesenteric Ischemia/mortality , Rats, Wistar , Statistics, Nonparametric
3.
J Trauma ; 64(5): 1196-200; discussion 1200-1, 2008 May.
Article En | MEDLINE | ID: mdl-18469641

BACKGROUND: Although the role of the lung alveolar macrophage (AM) as a mediator of acute lung injury (ALI) after lung ischemia/reperfusion (I/R) has been suggested by animal experiments, it has not been determined whether AMs mediate ALI after intestinal I/R. The objective of this study was to determine the effect of AM elimination on ALI after intestinal I/R in rats. METHODS: Male Wistar rats (n = 90) were randomly divided into three groups: the clodronate-liposomes (CLOD-LIP) group received intratracheal treatment with CLOD-LIP; the liposomes (LIP) group received intratracheal treatment with LIP; and the nontreated (UNTREAT) group received no treatment. Twenty-four hours later each group was randomly divided into three subgroups: the intestinal I/R subgroup was subjected to 45-minute intestinal ischemia and 2-hour reperfusion; the laparotomy (LAP) subgroup was subjected to LAP and sham procedures; the control (CTR) subgroup received no treatment. At the end of reperfusion, ALI was quantitated in all the animals by the Evans blue dye (EBD) method. RESULTS: ALI values are expressed as EBD lung leakage (microg EBD/g dry lung weight). EBD lung leakage values in the CLOD-LIP group were 32.59 +/- 12.74 for I/R, 27.74 +/- 7.99 for LAP, and 33.52 +/- 10.17 for CTR. In the LIP group, lung leakage values were 58.02 +/- 18.04 for I/R, 31.90 +/- 8.72 for LAP, and 27.17 +/- 11.48 for CTR. In the UNTREAT group, lung leakage values were 55.60 +/- 10.96 for I/R, 35.99 +/- 6.89 for LAP, and 30.83 +/- 8.41 for CTR. Within each group, LAP values did not differ from CTR values. However, in the LIP and UNTREAT groups, values for both the LAP and CTR subgroups were lower than values for the I/R subgroup (p < 0.001). The CLOD-LIP I/R subgroup value was less (p < 0.001) than the I/R subgroup values in the LIP and UNTREAT groups. These results indicated that I/R provokes ALI that can be prevented by CLOD-LIP treatment, and further suggested that AMs are essential for ALI occurrence induced by intestinal I/R in rats.


Bone Density Conservation Agents/administration & dosage , Clodronic Acid/administration & dosage , Intestines/blood supply , Macrophages, Alveolar/drug effects , Reperfusion Injury/complications , Respiratory Distress Syndrome/etiology , Animals , Capillary Permeability , Liposomes , Macrophages, Alveolar/physiology , Male , Phagocytosis , Rats , Rats, Wistar , Respiratory Distress Syndrome/physiopathology
...