Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 147: 107353, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615475

ABSTRACT

Dialkyl/aryl aminophosphonates, 3a-g and 4a-e were synthesized using the LiClO4 catalyzed Kabachnic Fields-type reaction straightforwardly and efficiently. The synthesized phosphonates structures were characterized using elemental analyses, FT-IR, 1H NMR, 13C NMR, and MS spectroscopy. The new compounds were subjected to in-silico molecular docking simulations to evaluate their potential inhibition against Influenza A Neuraminidase and RNA-dependent RNA polymerase of human coronavirus 229E. Subsequently, the compounds were further tested in vitro using a cytopathic inhibition assay to assess their antiviral activity against both human Influenza (H1N1) and human coronavirus (HCoV-229E). Diphenyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (furan-2-yl) methyl) phosphonate (3f) and diethyl ((2-(5-cyano-6-oxo-4-phenyl-1,6-dihydropyrimidin-2-yl) hydrazinyl) (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl) methyl) phosphonate (4e) were demonstrated direct inhibition activity against Influenza A Neuraminidase and RNA-dependent RNA polymerase. This was supported by their highly favorable binding energies in-silico, with top-ranked values of -12.5 kcal/mol and -14.2 kcal/mol for compound (3f), and -13.5 kcal/mol and -9.89 kcal/mol for compound (4e). Moreover, they also displayed notable antiviral efficacy in vitro against both viruses. These compounds demonstrated significant antiviral activity, as evidenced by selectivity indices (SI) of 101.7 and 51.8, respectively against H1N1, and 24.5 and 5.1 against HCoV-229E, respectively.


Subject(s)
Antiviral Agents , Coronavirus 229E, Human , Drug Design , Influenza A Virus, H1N1 Subtype , Molecular Docking Simulation , Organophosphonates , Pyrimidinones , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Influenza A Virus, H1N1 Subtype/drug effects , Humans , Pyrimidinones/pharmacology , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Structure-Activity Relationship , Organophosphonates/pharmacology , Organophosphonates/chemistry , Organophosphonates/chemical synthesis , Coronavirus 229E, Human/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Neuraminidase/antagonists & inhibitors , Neuraminidase/metabolism , RNA-Dependent RNA Polymerase/antagonists & inhibitors , RNA-Dependent RNA Polymerase/metabolism
2.
Sci Rep ; 13(1): 14680, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37673913

ABSTRACT

The present study involves synthesis a new series of α-aminophosphonates 2a-f and 4a-d derivatives in good yield with a simple workup via Kabachnik-Fields reaction in the presence of lithium perchlorate as Lewis acid catalyst. All the newly synthesized compounds were confirmed using various physical, spectroscopic, and analytical data. The in vitro anticancer activities of each compound were evaluated against colorectal carcinoma Colon cancer (HCT-116) and Epdermoid carcinoma (HEP2) and also Human lung fibroblast normal cell line (WI38) compared with Doxorubicin. The results showed that Compounds 2a, 4b and 4d exhibited more potent inhibitory activity for Epdermoid Carcinoma (HEP2) compared with doxorubicin. For colon carcinoma cells (HCT-116) Compounds 2a, 2d and 4b gave the strongest activity among all compounds compared with doxorubicin. Moreover, all designed structures were docked into the active site of VEGFR2 and FGFR1 proteins. The result reveals that compound 2b and have the strongest inhibitory activity of the VEGFR2 and FGFR1 proteins indicating that these substances might conceivably operate as VEGFR2 and FGFR1 inhibitors and hence might take role in anticancer activities with various binding interactions. The 3D-QSAR models produced strong statistical results since they were defined by PLS factors 4 and confirmed by parameters as R2, R2 CV, Stability, F-value, P-value, RMSE, Q2, and Pearson-r.


Subject(s)
Carcinoma , Colonic Neoplasms , Humans , Cell Line , Doxorubicin/pharmacology , Pyrazoles
3.
Article in English | MEDLINE | ID: mdl-30081271

ABSTRACT

A new diphenyl (aryl) (Ǹ-quinazolin-4-yl-hydrazino) methylphosphonates 3a-3d was synthesized via anhydrous zinc chloride catalyzed Kabachnic-Fields reaction. The structure of the synthesized compounds was confirmed by elemental analysis, FT-IR, 1H NMR, 13C NMR, 31P NMR and MS spectral data. The synthesized compounds showed significant antimicrobial and also remarkable cytotoxicity anticancer activities against breast carcinoma cell line (MCF7). The quantum chemical calculations were performed using density functional theory (DFT) to study the effect of the changes of molecular and electronic structures on the biological activity of the investigated compounds. Also, NBO and theoretical FT-IR were calculated. The experimental results were validated by molecular docking simulation of compound 3b in the active pocket of the enzyme. The important binding interactions with the key residues in the active site were revealed. A good correlation was found between the quantum chemical parameters and experimental data.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemistry , Organophosphonates/chemistry , Quinazolines/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Cell Survival/drug effects , Fungi/drug effects , Humans , MCF-7 Cells , Molecular Docking Simulation , Organophosphonates/pharmacology , Quinazolines/pharmacology , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL