Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 344
Filter
1.
Mult Scler J Exp Transl Clin ; 10(3): 20552173241263491, 2024.
Article in English | MEDLINE | ID: mdl-39072298

ABSTRACT

Background: Multiple sclerosis (MS) shares clinical/radiological features with several monogenic diseases that can mimic MS. Objective: We aimed to determine if exome sequencing can identify monogenic diseases in patients diagnosed with MS according to the McDonald criteria thus uncovering them as being misdiagnosed. Methods: We performed whole exome sequencing in a cohort of 278 patients with MS, clinically or radiologically isolated syndrome without cerebrospinal fluid-specific oligoclonal bands (CSF-OCBs) (n = 228), a positive family history of MS (n = 44), or both (n = 6), thereby focusing on individuals potentially more likely to have underlying monogenic conditions mimicking MS. We prioritized 495 genes associated with monogenic diseases sharing features with MS. Results: A disease-causing variant in NOTCH3 was identified in one patient without CSF-OCBs, no spinal lesions, with non-response to immunotherapy, and a family history of dementia, thereby converting the diagnosis to cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Moreover, 18 patients (6.5% of total) carried variants of unclear significance. Conclusion: Monogenic diseases being misdiagnosed as MS seem rare in patients diagnosed with MS according to the McDonald criteria, even in CSF-OCB negative cases. The detected pathogenic NOTCH3 variant emphasizes CADASIL as a rare differential diagnosis and highlights the relevance of genetic testing in selected MS cases with atypical presentations.

2.
J Neurol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990346

ABSTRACT

BACKGROUND: Chronic inflammatory demyelinating polyneuropathy (CIDP) is an inflammatory disease affecting the peripheral nerves and the most frequent autoimmune polyneuropathy. Given the lack of established biomarkers or risk factors for the development of CIDP and patients' treatment response, this research effort seeks to identify potential clinical factors that may influence disease progression and overall treatment efficacy. METHODS: In this multicenter, retrospective analysis, we have screened 197 CIDP patients who presented to the University Hospitals in Düsseldorf, Berlin, Cologne, Essen, Magdeburg and Munich between 2018 and 2022. We utilized the respective hospital information system and examined baseline data with clinical examination, medical letters, laboratory results, antibody status, nerve conduction studies, imaging and biopsy findings. Aside from clinical baseline data, we analyzed treatment outcomes using the Standard of Care (SOC) definition, as well as a comparison of an early (within the first 12 months after manifestation) versus late (more than 12 months after manifestation) onset of therapy. RESULTS: In terms of treatment, most patients received intravenous immunoglobulin (56%) or prednisolone (39%) as their first therapy. Patients who started their initial treatment later experienced a worsening disease course, as reflected by a significant deterioration in their Inflammatory Neuropathy Cause and Treatment (INCAT) leg disability score. SOC-refractory patients had worse clinical outcomes than SOC-responders. Associated factors for SOC-refractory status included the presence of fatigue as a symptom and alcohol dependence. CONCLUSION: Timely diagnosis, prompt initiation of treatment and careful monitoring of treatment response are essential for the prevention of long-term disability in CIDP and suggest a "hit hard and early" treatment paradigm.

3.
Mult Scler ; 30(7): 812-819, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38751230

ABSTRACT

BACKGROUND: Alterations of the superficial retinal vasculature are commonly observed in multiple sclerosis (MS) and can be visualized through optical coherence tomography angiography (OCTA). OBJECTIVES: This study aimed to examine changes in the retinal vasculature during MS and to integrate findings into current concepts of the underlying pathology. METHODS: In this cross-sectional study, including 259 relapsing-remitting MS patients and 78 healthy controls, we analyzed OCTAs using deep-learning-based segmentation algorithm tools. RESULTS: We identified a loss of small-sized vessels (diameter < 10 µm) in the superficial vascular complex in all MS eyes, irrespective of their optic neuritis (ON) history. This alteration was associated with MS disease burden and appears independent of retinal ganglion cell loss. In contrast, an observed reduction of medium-sized vessels (diameter 10-20 µm) was specific to eyes with a history of ON and was closely linked to ganglion cell atrophy. CONCLUSION: These findings suggest distinct atrophy patterns in retinal vessels in patients with MS. Further studies are necessary to investigate retinal vessel alterations and their underlying pathology in MS.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Optic Neuritis , Retinal Vessels , Tomography, Optical Coherence , Humans , Female , Cross-Sectional Studies , Male , Adult , Retinal Vessels/pathology , Retinal Vessels/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Middle Aged , Optic Neuritis/pathology , Optic Neuritis/diagnostic imaging , Retinal Ganglion Cells/pathology , Deep Learning , Atrophy/pathology , Cost of Illness
4.
Neuroimage Clin ; 42: 103611, 2024.
Article in English | MEDLINE | ID: mdl-38703470

ABSTRACT

Automated segmentation of brain white matter lesions is crucial for both clinical assessment and scientific research in multiple sclerosis (MS). Over a decade ago, we introduced an engineered lesion segmentation tool, LST. While recent lesion segmentation approaches have leveraged artificial intelligence (AI), they often remain proprietary and difficult to adopt. As an open-source tool, we present LST-AI, an advanced deep learning-based extension of LST that consists of an ensemble of three 3D U-Nets. LST-AI explicitly addresses the imbalance between white matter (WM) lesions and non-lesioned WM. It employs a composite loss function incorporating binary cross-entropy and Tversky loss to improve segmentation of the highly heterogeneous MS lesions. We train the network ensemble on 491 MS pairs of T1-weighted and FLAIR images, collected in-house from a 3T MRI scanner, and expert neuroradiologists manually segmented the utilized lesion maps for training. LST-AI also includes a lesion location annotation tool, labeling lesions as periventricular, infratentorial, and juxtacortical according to the 2017 McDonald criteria, and, additionally, as subcortical. We conduct evaluations on 103 test cases consisting of publicly available data using the Anima segmentation validation tools and compare LST-AI with several publicly available lesion segmentation models. Our empirical analysis shows that LST-AI achieves superior performance compared to existing methods. Its Dice and F1 scores exceeded 0.62, outperforming LST, SAMSEG (Sequence Adaptive Multimodal SEGmentation), and the popular nnUNet framework, which all scored below 0.56. Notably, LST-AI demonstrated exceptional performance on the MSSEG-1 challenge dataset, an international WM lesion segmentation challenge, with a Dice score of 0.65 and an F1 score of 0.63-surpassing all other competing models at the time of the challenge. With increasing lesion volume, the lesion detection rate rapidly increased with a detection rate of >75% for lesions with a volume between 10 mm3 and 100 mm3. Given its higher segmentation performance, we recommend that research groups currently using LST transition to LST-AI. To facilitate broad adoption, we are releasing LST-AI as an open-source model, available as a command-line tool, dockerized container, or Python script, enabling diverse applications across multiple platforms.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Multiple Sclerosis , White Matter , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Magnetic Resonance Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology , Brain/diagnostic imaging , Brain/pathology , Image Processing, Computer-Assisted/methods , Female , Neuroimaging/methods , Neuroimaging/standards , Male , Adult
5.
J Neurol ; 271(7): 4610-4619, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743089

ABSTRACT

BACKGROUND: While retinal vessel changes are evident in the eyes of patients with relapsing-remitting multiple sclerosis (RRMS), changes in the vasculature of possible MS mimics such as primary Sjögren's syndrome (pSS) remain to be determined. We investigated the potential of retinal optical coherence tomography (OCT) angiography (OCTA) as diagnostic tool to differentiate between patients with RRMS and pSS. METHODS: This cross-sectional study included patients with RRMS (n = 36), pSS (n = 36) and healthy controls (n = 30). Participants underwent clinical examination, assessment of visual acuity, retinal OCT, OCTA, and serum markers of glial and neuronal damage. We investigated the associations between OCTA parameters, visual functions, and serum markers. Eyes with a history of optic neuritis (ON) were excluded from analysis. RESULTS: We observed a significant thinning of the combined ganglion cell and inner plexiform layer in the eyes of patients with RRMS but not with pSS, when compared to healthy controls. Retinal vessel densities of the superficial vascular complex (SVC) were reduced in both patients with RRMS and pSS. However, retinal vessel rarefication of the deep vascular complex (DVC) was only evident in patients with pSS but not RRMS. Using multivariate regression analysis, we found that DVC vessel loss in pSS patients was associated with worse visual acuity. CONCLUSIONS: Compared to patients with RRMS, rarefication of deep retinal vessels is a unique characteristic of pSS and associated with worse visual function. Assuming a disease-specific retinal vessel pathology, these data are indicative of a differential affliction of the gliovascular complex in the retina of RRMS and pSS patients.


Subject(s)
Sjogren's Syndrome , Tomography, Optical Coherence , Humans , Female , Male , Cross-Sectional Studies , Sjogren's Syndrome/diagnostic imaging , Sjogren's Syndrome/complications , Sjogren's Syndrome/pathology , Middle Aged , Adult , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/physiopathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Retina/diagnostic imaging , Retina/pathology , Retinal Diseases/diagnostic imaging , Retinal Diseases/etiology , Visual Acuity/physiology
6.
Neurol Res Pract ; 6(1): 15, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38449051

ABSTRACT

INTRODUCTION: In Multiple Sclerosis (MS), patients´ characteristics and (bio)markers that reliably predict the individual disease prognosis at disease onset are lacking. Cohort studies allow a close follow-up of MS histories and a thorough phenotyping of patients. Therefore, a multicenter cohort study was initiated to implement a wide spectrum of data and (bio)markers in newly diagnosed patients. METHODS: ProVal-MS (Prospective study to validate a multidimensional decision score that predicts treatment outcome at 24 months in untreated patients with clinically isolated syndrome or early Relapsing-Remitting-MS) is a prospective cohort study in patients with clinically isolated syndrome (CIS) or Relapsing-Remitting (RR)-MS (McDonald 2017 criteria), diagnosed within the last two years, conducted at five academic centers in Southern Germany. The collection of clinical, laboratory, imaging, and paraclinical data as well as biosamples is harmonized across centers. The primary goal is to validate (discrimination and calibration) the previously published DIFUTURE MS-Treatment Decision score (MS-TDS). The score supports clinical decision-making regarding the options of early (within 6 months after study baseline) platform medication (Interferon beta, glatiramer acetate, dimethyl/diroximel fumarate, teriflunomide), or no immediate treatment (> 6 months after baseline) of patients with early RR-MS and CIS by predicting the probability of new or enlarging lesions in cerebral magnetic resonance images (MRIs) between 6 and 24 months. Further objectives are refining the MS-TDS score and providing data to identify new markers reflecting disease course and severity. The project also provides a technical evaluation of the ProVal-MS cohort within the IT-infrastructure of the DIFUTURE consortium (Data Integration for Future Medicine) and assesses the efficacy of the data sharing techniques developed. PERSPECTIVE: Clinical cohorts provide the infrastructure to discover and to validate relevant disease-specific findings. A successful validation of the MS-TDS will add a new clinical decision tool to the armamentarium of practicing MS neurologists from which newly diagnosed MS patients may take advantage. Trial registration ProVal-MS has been registered in the German Clinical Trials Register, `Deutsches Register Klinischer Studien` (DRKS)-ID: DRKS00014034, date of registration: 21 December 2018; https://drks.de/search/en/trial/DRKS00014034.

7.
Nature ; 627(8003): 407-415, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383779

ABSTRACT

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen1. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP42. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood. Here we show that B cells endogenously express AQP4 in response to activation with anti-CD40 and IL-21 and are able to present their endogenous AQP4 to T cells with an AQP4-specific T cell receptor (TCR). A population of thymic B cells emulates a CD40-stimulated B cell transcriptome, including AQP4 (in mice and humans), and efficiently purges the thymic TCR repertoire of AQP4-reactive clones. Genetic ablation of Aqp4 in B cells rescues AQP4-specific TCRs despite sufficient expression of AQP4 in medullary thymic epithelial cells, and B-cell-conditional AQP4-deficient mice are fully competent to raise AQP4-specific antibodies in productive germinal-centre responses. Thus, the negative selection of AQP4-specific thymocytes is dependent on the expression and presentation of AQP4 by thymic B cells. As AQP4 is expressed in B cells in a CD40-dependent (but not AIRE-dependent) manner, we propose that thymic B cells might tolerize against a group of germinal-centre-associated antigens, including disease-relevant autoantigens such as AQP4.


Subject(s)
Aquaporin 4 , Autoantibodies , Autoantigens , B-Lymphocytes , Immune Tolerance , Neuromyelitis Optica , Animals , Humans , Mice , AIRE Protein , Aquaporin 4/deficiency , Aquaporin 4/genetics , Aquaporin 4/immunology , Aquaporin 4/metabolism , Autoantibodies/immunology , Autoantigens/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD40 Antigens/immunology , Germinal Center/cytology , Germinal Center/immunology , Neuromyelitis Optica/immunology , Neuromyelitis Optica/metabolism , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/immunology , Thyroid Epithelial Cells/immunology , Thyroid Epithelial Cells/metabolism , Transcriptome
8.
EBioMedicine ; 100: 104982, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306899

ABSTRACT

BACKGROUND: Inflammatory demyelinating diseases of the central nervous system, such as multiple sclerosis, are significant sources of morbidity in young adults despite therapeutic advances. Current murine models of remyelination have limited applicability due to the low white matter content of their brains, which restricts the spatial resolution of diagnostic imaging. Large animal models might be more suitable but pose significant technological, ethical and logistical challenges. METHODS: We induced targeted cerebral demyelinating lesions by serially repeated injections of lysophosphatidylcholine in the minipig brain. Lesions were amenable to follow-up using the same clinical imaging modalities (3T magnetic resonance imaging, 11C-PIB positron emission tomography) and standard histopathology protocols as for human diagnostics (myelin, glia and neuronal cell markers), as well as electron microscopy (EM), to compare against biopsy data from two patients. FINDINGS: We demonstrate controlled, clinically unapparent, reversible and multimodally trackable brain white matter demyelination in a large animal model. De-/remyelination dynamics were slower than reported for rodent models and paralleled by a degree of secondary axonal pathology. Regression modelling of ultrastructural parameters (g-ratio, axon thickness) predicted EM features of cerebral de- and remyelination in human data. INTERPRETATION: We validated our minipig model of demyelinating brain diseases by employing human diagnostic tools and comparing it with biopsy data from patients with cerebral demyelination. FUNDING: This work was supported by the DFG under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy, ID 390857198) and TRR 274/1 2020, 408885537 (projects B03 and Z01).


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , White Matter , Swine , Humans , Animals , Mice , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Cuprizone , Swine, Miniature , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Myelin Sheath/pathology , White Matter/pathology , Microscopy, Electron , Disease Models, Animal
9.
Nat Immunol ; 25(3): 432-447, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409259

ABSTRACT

Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.


Subject(s)
Astrocytes , Multiple Sclerosis , Animals , Humans , Mice , Anti-Inflammatory Agents , Disease Models, Animal , Epigenesis, Genetic , Heparin-binding EGF-like Growth Factor/genetics , Inflammation , Proteomics
10.
Infection ; 52(1): 243-247, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37814203

ABSTRACT

BACKGROUND: Borna disease virus 1 (BoDV-1) causes rare human infections within endemic regions in southern and eastern Germany. The infections reported to date have been linked to severe courses of encephalitis with high mortality and mostly irreversible symptoms. Whether BoDV-1 could act as a trigger for other neurological conditions, is, however, incompletely understood. OBJECTIVES AND METHODS: In this study, we addressed the question of whether the presentation of a clinically isolated syndrome (CIS) or of multiple sclerosis (MS) might be associated with a milder course of BoDV-1 infections. Serum samples of 100 patients with CIS or MS diagnosed at a tertiary neurological care center within an endemic region in southern Germany and of 50 control patients suffering from headache were retrospectively tested for BoDV-1 infections. RESULTS: In none of the tested sera, confirmed positive results of anti-BoDV-1-IgG antibodies were retrieved. Our results support the conclusion that human BoDV-1 infections primarily lead to severe encephalitis with high mortality.


Subject(s)
Borna Disease , Borna disease virus , Encephalitis , Multiple Sclerosis , Animals , Humans , Borna disease virus/genetics , Borna Disease/epidemiology , Borna Disease/complications , Retrospective Studies , Pilot Projects , Multiple Sclerosis/epidemiology , Antibodies, Viral
11.
medRxiv ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38045345

ABSTRACT

Automated segmentation of brain white matter lesions is crucial for both clinical assessment and scientific research in multiple sclerosis (MS). Over a decade ago, we introduced an engineered lesion segmentation tool, LST. While recent lesion segmentation approaches have leveraged artificial intelligence (AI), they often remain proprietary and difficult to adopt. As an open-source tool, we present LST-AI, an advanced deep learning-based extension of LST that consists of an ensemble of three 3D-UNets. LST-AI explicitly addresses the imbalance between white matter (WM) lesions and non-lesioned WM. It employs a composite loss function incorporating binary cross-entropy and Tversky loss to improve segmentation of the highly heterogeneous MS lesions. We train the network ensemble on 491 MS pairs of T1w and FLAIR images, collected in-house from a 3T MRI scanner, and expert neuroradiologists manually segmented the utilized lesion maps for training. LST-AI additionally includes a lesion location annotation tool, labeling lesion location according to the 2017 McDonald criteria (periventricular, infratentorial, juxtacortical, subcortical). We conduct evaluations on 103 test cases consisting of publicly available data using the Anima segmentation validation tools and compare LST-AI with several publicly available lesion segmentation models. Our empirical analysis shows that LST-AI achieves superior performance compared to existing methods. Its Dice and F1 scores exceeded 0.62, outperforming LST, SAMSEG (Sequence Adaptive Multimodal SEGmentation), and the popular nnUNet framework, which all scored below 0.56. Notably, LST-AI demonstrated exceptional performance on the MSSEG-1 challenge dataset, an international WM lesion segmentation challenge, with a Dice score of 0.65 and an F1 score of 0.63-surpassing all other competing models at the time of the challenge. With increasing lesion volume, the lesion detection rate rapidly increased with a detection rate of >75% for lesions with a volume between 10mm3 and 100mm3. Given its higher segmentation performance, we recommend that research groups currently using LST transition to LST-AI. To facilitate broad adoption, we are releasing LST-AI as an open-source model, available as a command-line tool, dockerized container, or Python script, enabling diverse applications across multiple platforms.

12.
Neurol Neuroimmunol Neuroinflamm ; 11(1): e200185, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38100739

ABSTRACT

BACKGROUND AND OBJECTIVES: The factors that drive progression in multiple sclerosis (MS) remain obscure. Identification of key properties of meningeal inflammation will contribute to a better understanding of the mechanisms of progression and how to prevent it. METHODS: Applying single-cell RNA sequencing, we compared gene expression profiles in immune cells from meningeal ectopic lymphoid tissue (mELT) with those from secondary lymphoid organs (SLOs) in spontaneous chronic experimental autoimmune encephalomyelitis (EAE), an animal model of MS. RESULTS: Generally, mELT contained the same immune cell types as SLOs, suggesting a close relationship. Preponderance of B cells over T cells, an increase in regulatory T cells and granulocytes, and a decrease in naïve CD4+ T cells characterize mELT compared with SLOs. Differential gene expression analysis revealed that immune cells in mELT show a more activated and proinflammatory phenotype compared with their counterparts in SLOs. However, the increase in regulatory T cells and upregulation of immunosuppressive genes in most immune cell types indicate that there are mechanisms in place to counter-regulate the inflammatory events, keeping the immune response emanating from mELT in check. DISCUSSION: Common features in immune cell composition and gene expression indicate that mELT resembles SLOs and may be regarded as a tertiary lymphoid tissue. Distinct differences in expression profiles suggest that mELT rather than SLOs is a key driver of CNS inflammation in spontaneous EAE. Our data provide a starting point for further exploration of molecules or pathways that could be targeted to disrupt mELT formation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Tertiary Lymphoid Structures , Animals , Central Nervous System , Meninges , Inflammation
13.
Front Immunol ; 14: 1284986, 2023.
Article in English | MEDLINE | ID: mdl-38090586

ABSTRACT

Background: Optical coherence tomography angiography (OCTA) allows non-invasive assessment of retinal vessel structures. Thinning and loss of retinal vessels is evident in eyes of patients with multiple sclerosis (MS) and might be associated with a proinflammatory disease phenotype and worse prognosis. We investigated whether changes of the retinal vasculature are linked to brain atrophy and disability in MS. Material and methods: This study includes one longitudinal observational cohort (n=79) of patients with relapsing-remitting MS. Patients underwent annual assessment of the expanded disability status scale (EDSS), timed 25-foot walk, symbol digit modalities test (SDMT), retinal optical coherence tomography (OCT), OCTA, and brain MRI during a follow-up duration of at least 20 months. We investigated intra-individual associations between changes in the retinal architecture, vasculature, brain atrophy and disability. Eyes with a history of optic neuritis (ON) were excluded. Results: We included 79 patients with a median disease duration of 12 (interquartile range 2 - 49) months and a median EDSS of 1.0 (0 - 2.0). Longitudinal retinal axonal and ganglion cell loss were linked to grey matter atrophy, cortical atrophy, and volume loss of the putamen. We observed an association between vessel loss of the superficial vascular complex (SVC) and both grey and white matter atrophy. Both observations were independent of retinal ganglion cell loss. Moreover, patients with worsening of the EDSS and SDMT revealed a pronounced longitudinal rarefication of the SVC and the deep vascular complex. Discussion: ON-independent narrowing of the retinal vasculature might be linked to brain atrophy and disability in MS. Our findings suggest that retinal OCTA might be a new tool for monitoring neurodegeneration during MS.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Neurodegenerative Diseases , Optic Neuritis , Humans , Atrophy , Brain/diagnostic imaging , Brain/pathology , Central Nervous System Diseases/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Neurodegenerative Diseases/pathology , Optic Neuritis/diagnostic imaging , Optic Neuritis/pathology , Retina/diagnostic imaging , Retina/pathology , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Longitudinal Studies
14.
Brain Behav ; 13(12): e3327, 2023 12.
Article in English | MEDLINE | ID: mdl-37961043

ABSTRACT

OBJECTIVE: Cortical gray matter (GM) atrophy plays a central role in multiple sclerosis (MS) pathology. However, it is not commonly assessed in clinical routine partly because a number of methodological problems hamper the development of a robust biomarker to quantify GM atrophy. In previous work, we have demonstrated the clinical utility of the "mosaic approach" (MAP) to assess individual GM atrophy in the motor neuron disease spectrum and frontotemporal dementia. In this study, we investigated the clinical utility of MAP in MS, comparing this novel biomarker to existing methods for computing GM atrophy in single patients. We contrasted the strategies based on correlations with established biomarkers reflecting MS disease burden. METHODS: We analyzed T1-weighted MPRAGE magnetic resonance imaging data from 465 relapsing-remitting MS patients and 89 healthy controls. We inspected how variations of existing strategies to estimate individual GM atrophy ("standard approaches") as well as variations of MAP (i.e., different parcellation schemes) impact downstream analysis results, both on a group and an individual level. We interpreted individual cortical disease burden as single metric reflecting the fraction of significantly atrophic data points with respect to the control group. In addition, we evaluated the correlations to lesion volume (LV) and Expanded Disability Status Scale (EDSS). RESULTS: We found that the MAP method yielded highest correlations with both LV and EDSS as compared to all other strategies. Although the parcellation resolution played a minor role in terms of absolute correlations with clinical variables, higher resolutions provided more clearly defined statistical brain maps which may facilitate clinical interpretability. CONCLUSION: This study provides evidence that MAP yields high potential for a clinically relevant biomarker in MS, outperforming existing methods to compute cortical disease burden in single patients. Of note, MAP outputs brain maps illustrating individual cortical disease burden which can be directly interpreted in daily clinical routine.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Multiple Sclerosis, Relapsing-Remitting/pathology , Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Gray Matter/pathology , Atrophy/pathology , Biomarkers , Brain/diagnostic imaging , Brain/pathology
15.
Mult Scler ; 29(14): 1831-1840, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37830337

ABSTRACT

BACKGROUND: Infections are discussed as risk factor for multiple sclerosis (MS) development and relapses. This may lead to decreased vaccination frequency in newly diagnosed patients. OBJECTIVE: The aim of this study was to evaluate the relation of MS diagnosis to subsequent vaccination frequency. METHODS: Based on German ambulatory claims data from 2005 to 2019, regression models were used to assess the relation of MS diagnosis (n = 12,270) to vaccination. A cohort of patients with MS was compared to control cohorts with Crohn's disease, psoriasis, and without these autoimmune diseases (total n = 198,126) in the 5 years after and before diagnosis. RESULTS: Patients with MS were less likely to be vaccinated compared to persons without the autoimmune diseases 5 years after diagnosis (odds ratio = 0.91, p < 0.001). Exceptions were vaccinations against influenza (1.29, p < 0.001) and pneumococci (1.41, p < 0.001). Differences were strong but less pronounced after than before diagnosis (p < 0.001). The likelihood of vaccination was also lower compared to patients with Crohn's disease or psoriasis. CONCLUSIONS: Patients with MS were not adequately vaccinated despite guideline recommendations. Increasing awareness about the importance of vaccination is warranted to reduce the risk of infection, in particular, in patients with MS receiving immunotherapies.


Subject(s)
Autoimmune Diseases , Crohn Disease , Multiple Sclerosis , Psoriasis , Humans , Autoimmune Diseases/etiology , Risk Factors , Psoriasis/complications , Vaccination/adverse effects
16.
Article in English | MEDLINE | ID: mdl-37813596

ABSTRACT

BACKGROUND AND OBJECTIVES: Optical coherence tomography angiography (OCTA) is a noninvasive high-resolution imaging technique for assessing the retinal vasculature and is increasingly used in various ophthalmologic, neuro-ophthalmologic, and neurologic diseases. To date, there are no validated consensus criteria for quality control (QC) of OCTA. Our study aimed to develop criteria for OCTA quality assessment. METHODS: To establish criteria through (1) extensive literature review on OCTA artifacts and image quality to generate standardized and easy-to-apply OCTA QC criteria, (2) application of OCTA QC criteria to evaluate interrater agreement, (3) identification of reasons for interrater disagreement, revision of OCTA QC criteria, development of OCTA QC scoring guide and training set, and (4) validation of QC criteria in an international, interdisciplinary multicenter study. RESULTS: We identified 7 major aspects that affect OCTA quality: (O) obvious problems, (S) signal strength, (C) centration, (A) algorithm failure, (R) retinal pathology, (M) motion artifacts, and (P) projection artifacts. Seven independent raters applied the OSCAR-MP criteria to a set of 40 OCTA scans from people with MS, Sjogren syndrome, and uveitis and healthy individuals. The interrater kappa was substantial (κ 0.67). Projection artifacts were the main reason for interrater disagreement. Because artifacts can affect only parts of OCTA images, we agreed that prior definition of a specific region of interest (ROI) is crucial for subsequent OCTA quality assessment. To enhance artifact recognition and interrater agreement on reduced image quality, we designed a scoring guide and OCTA training set. Using these educational tools, 23 raters from 14 different centers reached an almost perfect agreement (κ 0.92) for the rejection of poor-quality OCTA images using the OSCAR-MP criteria. DISCUSSION: We propose a 3-step approach for standardized quality control: (1) To define a specific ROI, (2) to assess the occurrence of OCTA artifacts according to the OSCAR-MP criteria, and (3) to evaluate OCTA quality based on the occurrence of different artifacts within the ROI. OSCAR-MP OCTA QC criteria achieved high interrater agreement in an international multicenter study and is a promising QC protocol for application in the context of future clinical trials and studies.


Subject(s)
Retinal Vessels , Tomography, Optical Coherence , Humans , Consensus , Fluorescein Angiography/methods , Retina/diagnostic imaging
17.
Ann Neurol ; 94(6): 1080-1085, 2023 12.
Article in English | MEDLINE | ID: mdl-37753809

ABSTRACT

The minor allele of the genetic variant rs10191329 in the DYSF-ZNF638 locus is associated with unfavorable long-term clinical outcomes in multiple sclerosis patients. We investigated if rs10191329 is associated with brain atrophy measured by magnetic resonance imaging in a discovery cohort of 748 and a replication cohort of 360 people with relapsing multiple sclerosis. We observed an association with 28% more brain atrophy per rs10191329*A allele. Our results encourage stratification for rs10191329 in clinical trials. Unraveling the underlying mechanisms may enhance our understanding of pathophysiology and identify treatment targets. ANN NEUROL 2023;94:1080-1085.


Subject(s)
Central Nervous System Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Humans , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Brain/pathology , Magnetic Resonance Imaging/methods , Neurodegenerative Diseases/pathology , Atrophy/pathology
18.
Nat Commun ; 14(1): 5555, 2023 09 09.
Article in English | MEDLINE | ID: mdl-37689786

ABSTRACT

Multiple Sclerosis (MS) is a chronic autoimmune inflammatory disorder of the central nervous system (CNS). Current therapies mainly target inflammatory processes during acute stages, but effective treatments for progressive MS are limited. In this context, astrocytes have gained increasing attention as they have the capacity to drive, but also suppress tissue-degeneration. Here we show that astrocytes upregulate the immunomodulatory checkpoint molecule PD-L1 during acute autoimmune CNS inflammation in response to aryl hydrocarbon receptor and interferon signaling. Using CRISPR-Cas9 genetic perturbation in combination with small-molecule and antibody-mediated inhibition of PD-L1 and PD-1 both in vivo and in vitro, we demonstrate that astrocytic PD-L1 and its interaction with microglial PD-1 is required for the attenuation of autoimmune CNS inflammation in acute and progressive stages in a mouse model of MS. Our findings suggest the glial PD-L1/PD-1 axis as a potential therapeutic target for both acute and progressive MS stages.


Subject(s)
Microglia , Multiple Sclerosis , Animals , Mice , Astrocytes , Neuroinflammatory Diseases , Programmed Cell Death 1 Receptor/genetics , B7-H1 Antigen/genetics , Inflammation
19.
Ther Adv Neurol Disord ; 16: 17562864231197309, 2023.
Article in English | MEDLINE | ID: mdl-37692259

ABSTRACT

Background: Depression has a major impact on the disease burden of multiple sclerosis (MS). Analyses of overlapping MS and depression risk factors [smoking, vitamin D (25-OH-VD) and Epstein-Barr virus (EBV) infection] and sex, age, disease characteristics and neuroimaging features associated with depressive symptoms in early MS are scarce. Objectives: To assess an association of MS risk factors with depressive symptoms within the German NationMS cohort. Design: Cross-sectional analysis within a multicenter observational study. Methods: Baseline data of n = 781 adults with newly diagnosed clinically isolated syndrome or relapsing-remitting MS qualified for analysis. Global and region-specific magnetic resonance imaging (MRI)-volumetry parameters were available for n = 327 patients. Association of demographic factors, MS characteristics and risk factors [sex, age, smoking, disease course, presence of current relapse, expanded disability status scale (EDSS) score, fatigue (fatigue scale motor cognition), 25-OH-VD serum concentration, EBV nuclear antigen-1 IgG (EBNA1-IgG) serum levels] and depressive symptoms (Beck Depression Inventory-II, BDI-II) was tested as a primary outcome by multivariable linear regression. Non-parametric correlation and group comparison were performed for associations of MRI parameters and depressive symptoms. Results: Mean age was 34.3 years (95% confidence interval: 33.6-35.0). The female-to-male ratio was 2.3:1. At least minimal depressive symptoms (BDI-II > 8) were present in n = 256 (32.8%), 25-OH-VD deficiency (<20 ng/ml) in n = 398 (51.0%), n = 246 (31.5%) participants were smokers. Presence of current relapse [coefficient (c) = 1.48, p = 0.016], more severe fatigue (c = 0.26, p < 0.0001), lower 25-OH-VD (c = -0.03, p = 0.034) and smoking (c = 0.35, p = 0.008) were associated with higher BDI-II scores. Sex, age, disease course, EDSS, month of visit, EBNA1-IgG levels and brain volumes at baseline were not. Conclusion: Depressive symptoms need to be assessed in early MS. Patients during relapse seem especially vulnerable to depressive symptoms. Contributing factors such as fatigue, vitamin D deficiency and smoking, could specifically be targeted in future interventions and should be investigated in prospective studies.

20.
Brain Commun ; 5(4): fcad206, 2023.
Article in English | MEDLINE | ID: mdl-37564830

ABSTRACT

The programmed cell death protein 1/programmed cell death ligand 1 axis plays an important role in the adaptive immune system and has influence on neoplastic and inflammatory diseases, while its role in multiple sclerosis is unclear. Here, we aimed to analyse expression patterns of programmed cell death protein 1 and programmed cell death ligand 1 on peripheral blood mononuclear cells and their soluble variants in multiple sclerosis patients and controls, to determine their correlation with clinical disability and disease activity. In a cross-sectional study, we performed in-depth flow cytometric immunophenotyping of peripheral blood mononuclear cells and analysed soluble programmed cell death protein 1 and programmed cell death ligand 1 serum levels in patients with relapsing-remitting multiple sclerosis and controls. In comparison to control subjects, relapsing-remitting multiple sclerosis patients displayed distinct cellular programmed cell death protein 1/programmed cell death ligand 1 expression patterns in immune cell subsets and increased soluble programmed cell death ligand 1 levels, which correlated with clinical measures of disability and MRI activity over time. This study extends our knowledge of how programmed cell death protein 1 and programmed cell death ligand 1 are expressed in the membranes of patients with relapsing-remitting multiple sclerosis and describes for the first time the elevation of soluble programmed cell death ligand 1 in the blood of multiple sclerosis patients. The distinct expression pattern of membrane-bound programmed cell death protein 1 and programmed cell death ligand 1 and the correlation between soluble programmed cell death ligand 1, membrane-bound programmed cell death ligand 1, disease and clinical factors may offer therapeutic potential in the setting of multiple sclerosis and might improve future diagnosis and clinical decision-making.

SELECTION OF CITATIONS
SEARCH DETAIL