Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Nat Commun ; 13(1): 3911, 2022 07 19.
Article En | MEDLINE | ID: mdl-35853849

The influence of climate change on civil conflict and societal instability in the premodern world is a subject of much debate, in part because of the limited temporal or disciplinary scope of case studies. We present a transdisciplinary case study that combines archeological, historical, and paleoclimate datasets to explore the dynamic, shifting relationships among climate change, civil conflict, and political collapse at Mayapan, the largest Postclassic Maya capital of the Yucatán Peninsula in the thirteenth and fourteenth centuries CE. Multiple data sources indicate that civil conflict increased significantly and generalized linear modeling correlates strife in the city with drought conditions between 1400 and 1450 cal. CE. We argue that prolonged drought escalated rival factional tensions, but subsequent adaptations reveal regional-scale resiliency, ensuring that Maya political and economic structures endured until European contact in the early sixteenth century CE.


Climate Change , Droughts , Acclimatization , Archaeology
2.
Sci Rep ; 12(1): 10136, 2022 06 16.
Article En | MEDLINE | ID: mdl-35710914

Peninsular India hosts the initial rain-down of the Indian Summer Monsoon (ISM) after which winds travel further east inwards into Asia. Stalagmite oxygen isotope composition from this region, such as those from Belum Cave, preserve the vital signals of the past ISM variability. These archives experience a single wet season with a single dominant moisture source annually. Here we present high-resolution δ18O, δ13C and trace element (Mg/Ca, Sr/Ca, Ba/Ca, Mn/Ca) time series from a Belum Cave stalagmite spanning glacial MIS-6 (from ~ 183 to ~ 175 kyr) and interglacial substages MIS-5c-5a (~ 104 kyr to ~ 82 kyr). With most paleomonsoon reconstructions reporting coherent evolution of northern hemisphere summer insolation and ISM variability on orbital timescale, we focus on understanding the mechanisms behind millennial scale variability. Finding that the two are decoupled over millennial timescales, we address the role of the Southern Hemisphere processes in modulating monsoon strength as a part of the Hadley circulation. We identify several strong and weak episodes of ISM intensity during 104-82 kyr. Some of the weak episodes correspond to warming in the southern hemisphere associated with weak cross-equatorial winds. We show that during the MIS-5 substages, ISM strength gradually declined with millennial scale variability linked to Southern Hemisphere temperature changes which in turn modulate the strength of the Mascarene High.


Rain , Wind , Caves , Oxygen Isotopes , Seasons
3.
Sci Total Environ ; 841: 156756, 2022 Oct 01.
Article En | MEDLINE | ID: mdl-35718175

The Irrawaddy (Ayeyarwaddy) and Salween (Thanlwin) globally rank among the largest rivers for supplying dissolved and particulate material to the ocean. Along with the Sittaung and Kaladan rivers they have societal importance to Myanmar in terms water sources and food production. Despite their importance for global biogeochemical cycles and the ~50 million people who live in their catchments, the chemistry of these rivers is poorly known. This study presents a comprehensive survey of dissolved (<0.22 µm) trace element concentrations (Sr, Fe, Al, Ba, Mn, V, Rb, Cu, Zn, As, Li, Ni, Mo, Cr, U, Pb, Sb, Co, Cs, Tl and Cd) at 38 locations within these river catchments, spanning a period of 2 years. The results highlight the global importance of the Irrawaddy and Salween rivers for trace element global biogeochemical cycles; contributing between 1 and 17 % of global dissolved riverine fluxes to the land-ocean interface for the studied elements. Area normalized dissolved fluxes in these catchments are ~2 to 10 times higher than global average values for most elements, consistent with high rates of chemical weathering. In general, anthropogenic activities have yet to significantly perturb dissolved trace element fluxes in these river systems. The presented dataset should therefore serve as a useful 'natural' baseline, against which future perturbations driven by climate change and/or the development of Myanmar's mining industry could be assessed. Exceptions to this include As in the Sittaung River and Sb, Zn, Pb and As in the Salween River, which may already be significantly impacted by anthropogenic inputs. The former represents a water quality issue of concern for public health, and so constraining the exact sources of As in the Sittaung River should be considered a priority for future research.


Environmental Monitoring , Metals, Heavy , Rivers , Trace Elements , Water Pollutants, Chemical , Lead , Metals, Heavy/analysis , Myanmar , Rivers/chemistry , Trace Elements/analysis , Water Pollutants, Chemical/analysis
4.
Nat Commun ; 12(1): 823, 2021 02 05.
Article En | MEDLINE | ID: mdl-33547296

We present an application of multi-isotopic fingerprints (i.e., 236U/238U, 233U/236U, 236U/129I and 129I/127I) for the discovery of previously unrecognized sources of anthropogenic radioactivity. Our data indicate a source of reactor 236U in the Baltic Sea in addition to inputs from the two European reprocessing plants and global fallout. This additional reactor 236U may come from unreported discharges from Swedish nuclear research facilities as supported by high 236U levels in sediment nearby Studsvik, or from accidental leakages of spent nuclear fuel disposed on the Baltic seafloor, either reported or unreported. Such leakages would indicate problems with the radiological safety of seafloor disposal, and may be accompanied by releases of other radionuclides. The results demonstrate the high sensitivity of multi-isotopic tracer systems, especially the 233U/236U signature, to distinguish environmental emissions of unrevealed radioactive releases for nuclear safeguards, emergency preparedness and environmental tracer studies.


Radioisotopes/analysis , Seawater/analysis , Uranium/analysis , Water Pollutants, Radioactive/analysis , Baltic States , Humans , Radioactive Fallout/analysis , Sweden
5.
Nat Commun ; 11(1): 4204, 2020 08 21.
Article En | MEDLINE | ID: mdl-32826905

Between 5 and 4 thousand years ago, crippling megadroughts led to the disruption of ancient civilizations across parts of Africa and Asia, yet the extent of these climate extremes in mainland Southeast Asia (MSEA) has never been defined. This is despite archeological evidence showing a shift in human settlement patterns across the region during this period. We report evidence from stalagmite climate records indicating a major decrease of monsoon rainfall in MSEA during the mid- to late Holocene, coincident with African monsoon failure during the end of the Green Sahara. Through a set of modeling experiments, we show that reduced vegetation and increased dust loads during the Green Sahara termination shifted the Walker circulation eastward and cooled the Indian Ocean, causing a reduction in monsoon rainfall in MSEA. Our results indicate that vegetation-dust climate feedbacks from Sahara drying may have been the catalyst for societal shifts in MSEA via ocean-atmospheric teleconnections.

7.
Proc Natl Acad Sci U S A ; 116(1): 67-72, 2019 01 02.
Article En | MEDLINE | ID: mdl-30584111

The extent to which climate change causes significant societal disruption remains controversial. An important example is the decline of the Akkadian Empire in northern Mesopotamia ∼4.2 ka, for which the existence of a coincident climate event is still uncertain. Here we present an Iranian stalagmite record spanning 5.2 ka to 3.7 ka, dated with 25 U/Th ages that provide an average age uncertainty of 31 y (1σ). We find two periods of increased Mg/Ca, beginning abruptly at 4.51 and 4.26 ka, and lasting 110 and 290 y, respectively. Each of these periods coincides with slower vertical stalagmite growth and a gradual increase in stable oxygen isotope ratios. The periods of high Mg/Ca are explained by periods of increased dust flux sourced from the Mesopotamia region, and the abrupt onset of this dustiness indicates threshold behavior in response to aridity. This interpretation is consistent with existing marine and terrestrial records from the broad region, which also suggest that the later, longer event beginning at 4.26 ka is of greater regional extent and/or amplitude. The chronological precision and high resolution of our record indicates that there is no significant difference, at decadal level, between the start date of the second, larger dust event and the timing of North Mesopotamia settlement abandonment, and furthermore reveals striking similarity between the total duration of the second dust event and settlement abandonment. The Iranian record demonstrates this region's threshold behavior in dust production, and its ability to maintain this climate state for multiple centuries naturally.


Climate Change/history , Social Change/history , Calcium/analysis , Dust/analysis , History, Ancient , Humans , Magnesium/analysis , Meteorology/methods , Middle East , Oxygen Isotopes/analysis
8.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 11 28.
Article En | MEDLINE | ID: mdl-29035264
9.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 11 28.
Article En | MEDLINE | ID: mdl-29035270

Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

11.
Proc Natl Acad Sci U S A ; 110(7): 2500-5, 2013 Feb 12.
Article En | MEDLINE | ID: mdl-23362377

The global marine distributions of Cd and phosphate are closely correlated, which has led to Cd being considered as a marine micronutrient, despite its toxicity to life. The explanation for this nutrient-like behavior is unknown because there is only one identified biochemical function for Cd, an unusual Cd/Zn carbonic anhydrase. Recent developments in Cd isotope mass spectrometry have revealed that Cd uptake by phytoplankton causes isotopic fractionation in the open ocean and in culture. Here we investigate the physiochemical pathways that fractionate Cd isotopes by performing subcellular Cd isotope analysis on genetically modified microorganisms. We find that expression of the Cd/Zn carbonic anhydrase makes no difference to the Cd isotope composition of whole cells. Instead, a large proportion of the Cd is partitioned into cell membranes with a similar direction and magnitude of Cd isotopic fractionation to that seen in surface seawater. This observation is well explained if Cd is mistakenly imported with other divalent metals and subsequently managed by binding within the cell to avoid toxicity. This process may apply to other divalent metals, whereby nonspecific uptake and subsequent homeostasis may contribute to elemental and isotopic distributions in seawater, even for elements commonly considered as micronutrients.


Cadmium/analysis , Cadmium/metabolism , Carbonic Anhydrases/metabolism , Seawater/analysis , Cadmium/isolation & purification , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Histidine/chemistry , Isotopes/analysis , Oceans and Seas , Phosphates/analysis
12.
Nature ; 483(7391): 559-64, 2012 Mar 28.
Article En | MEDLINE | ID: mdl-22460900

Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.


Global Warming/history , Ice Cover , Seawater/analysis , Animals , Anthozoa , Coral Reefs , Freezing , History, Ancient , Oceans and Seas , Polynesia , Time Factors , Uncertainty
13.
Proc Natl Acad Sci U S A ; 107(50): 21355-9, 2010 Dec 14.
Article En | MEDLINE | ID: mdl-21115838

The phasing of millennial-scale oscillations in Antarctica relative to those elsewhere in the world is important for discriminating among models for abrupt climate change, particularly those involving the Southern Ocean. However, records of millennial-scale variability from Antarctica dating to the last glacial maximum are rare and rely heavily on data from widely spaced ice cores, some of which show little variability through that time. Here, we present new data from closed-basin lakes in the Dry Valleys region of East Antarctica that show high-magnitude, high-frequency oscillations in surface level during the late Pleistocene synchronous with climate fluctuations elsewhere in the Southern Hemisphere. These data suggest a coherent Southern Hemisphere pattern of climate change on millennial time scales, at least in the Pacific sector, and indicate that any hypothesis concerning the origin of these events must account for synchronous changes in both high and temperate latitudes.


Climate Change , Climate , Temperature , Antarctic Regions , Fresh Water , Geography , Ice Cover , Seawater , Water Cycle
14.
Nature ; 468(7320): 84-8, 2010 Nov 04.
Article En | MEDLINE | ID: mdl-21048764

The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.


Cold Climate , Ice Cover , Seawater/analysis , Water Movements , Atlantic Ocean , Atmosphere/chemistry , Carbon/analysis , Foraminifera/metabolism , History, Ancient , Temperature
15.
Proc Natl Acad Sci U S A ; 106(49): 20564-71, 2009 Dec 08.
Article En | MEDLINE | ID: mdl-19620716

Dust plays a vital role in climate and biophysical feedbacks in the Earth system. One source of dust, the Bodélé Depression in Chad, is estimated to produce about half the mineral aerosols emitted from the Sahara, which is the world's largest source. By using a variety of new remote sensing data, regional modeling, trajectory models, chemical analyses of dust, and future climate simulations, we investigate the current and past sensitivity of the Bodélé. We show that minor adjustments to small features of the atmospheric circulation, such as the Bodélé Low-Level Jet, could profoundly alter the behavior of this feature. Dust production during the mid-Holocene ceased completely from this key source region. Although subject to a great deal of uncertainty, some simulations of the 21st century indicate the potential for a substantial increase in dust production by the end of the century in comparison with current values.

16.
Science ; 324(5931): 1186-9, 2009 May 29.
Article En | MEDLINE | ID: mdl-19390000

The timing of sea-level change provides important constraints on the mechanisms driving Earth's climate between glacial and interglacial states. Fossil corals constrain the timing of past sea level by their suitability for dating and their growth position close to sea level. The coral-derived age for the last deglaciation is consistent with climate change forced by Northern Hemisphere summer insolation (NHI), but the timing of the penultimate deglaciation is more controversial. We found, by means of uranium/thorium dating of fossil corals, that sea level during the penultimate deglaciation had risen to ~85 meters below the present sea level by 137,000 years ago, and that it fluctuated on a millennial time scale during deglaciation. This indicates that the penultimate deglaciation occurred earlier with respect to NHI than the last deglacial, beginning when NHI was at a minimum.

17.
Anal Chem ; 81(5): 1914-9, 2009 Mar 01.
Article En | MEDLINE | ID: mdl-19203199

This manuscript describes a new protocol for determination of Pa/Th/U in marine sediments. It is based on microwave-assisted digestion and represents an important reduction of working time over conventional hot-plate digestion methods, and the use of HClO(4) is avoided. Although Th and U are completely dissolved with a first microwave step, around 40% of (231)Pa remains undissolved, and a short hot-plate step with reverse aqua regia is required to achieve total digestion and spike equilibration. Next, the method involves a separation of these elements and a further purification of the Pa fraction using Dowex AG1-X8 resin. Separation with Bio-Rad and Sigma-Aldrich resins was compared; although both perform similarly for Th and U, Pa yields are higher with Bio-Rad. Finally, samples are measured using a Nu instruments multiple collector inductively coupled plasma mass spectrometer (MC-ICPMS). Overall chemical yields range around 50% for Pa, 60% for Th, and 70% for U.

18.
Science ; 313(5787): 620-2, 2006 Aug 04.
Article En | MEDLINE | ID: mdl-16888126
19.
Science ; 308(5720): 361-2, 2005 Apr 15.
Article En | MEDLINE | ID: mdl-15831744

Earth's climate can change substantially on time scales of 1000 years or so, but given the time it takes for an ice sheet to grow or melt, it has been unclear whether continental ice sheets-and hence global sea levels-mirror these rapid changes. In his Perspective, Henderson discusses the report by Thompson and Goldstein, who have used a new correction method to date coral samples that are up to 250,000 years old. The corals can be used to deduce past sea levels. The resulting sea-level record shows that sea levels have varied on millennial time scales even during times of high sea level and relative climate stability.


Anthozoa , Fossils , Seawater , Animals , Anthozoa/chemistry , Climate , Ice , Oceans and Seas , Seasons , Temperature , Thorium/analysis , Time , Uranium/analysis
20.
Science ; 305(5685): 851-4, 2004 Aug 06.
Article En | MEDLINE | ID: mdl-15297670

The large variation in the ratio of uranium-234 to uranium-238 (234U/238U) in rivers is not well understood, but may provide information about past weathering and rainfall and is important because it controls seawater (234U/238U). Here, we demonstrate the importance of physical weathering and rainfall for (234U/238U), using rivers from South Island, New Zealand. These data allow interpretation of an existing speleothem (234U/238U) record and suggest that New Zealand glacier advance 13,000 years ago was influenced by increased rainfall rather than by Younger Dryas-like cooling. A model of seawater (234U/238U) during glacial cycles indicates that rejection of corals based on modern (234U/238U) +/- <0.01 is not merited and may reject the highest quality ages.

...