Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Blood ; 135(26): 2337-2353, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32157296

ABSTRACT

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC) CML remains challenging because BC cells acquire complex molecular alterations that confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine kinase inhibitors. Comprehensive models of BC transformation have proved elusive because of the rarity and genetic heterogeneity of BC, but are important for developing biomarkers predicting BC progression and effective therapies. To better understand BC, we performed an integrated multiomics analysis of 74 CP and BC samples using whole-genome and exome sequencing, transcriptome and methylome profiling, and chromatin immunoprecipitation followed by high-throughput sequencing. Employing pathway-based analysis, we found the BC genome was significantly enriched for mutations affecting components of the polycomb repressive complex (PRC) pathway. While transcriptomically, BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets respectively. By integrating our data sets, we determined that BC progenitors undergo PRC-driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically, PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing BC reprogramming (decitabine+PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene expression signatures predictive of disease progression and drug resistance in CP.


Subject(s)
Blast Crisis/genetics , Gene Expression Regulation, Leukemic/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Polycomb Repressive Complex 1/physiology , Polycomb Repressive Complex 2/physiology , Cell Differentiation , Chromatin Immunoprecipitation , DNA Methylation , Datasets as Topic , Enhancer of Zeste Homolog 2 Protein/physiology , Gene Dosage , Gene Ontology , High-Throughput Nucleotide Sequencing , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mutation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/genetics , Transcriptome , Exome Sequencing , Whole Genome Sequencing
2.
Genet Med ; 21(9): 2103-2115, 2019 09.
Article in English | MEDLINE | ID: mdl-30967659

ABSTRACT

PURPOSE: To identify the molecular cause in five unrelated families with a distinct autosomal dominant ocular systemic disorder we called ROSAH syndrome due to clinical features of retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache. METHODS: Independent discovery exome and genome sequencing in families 1, 2, and 3, and confirmation in families 4 and 5. Expression of wild-type messenger RNA and protein in human and mouse tissues and cell lines. Ciliary assays in fibroblasts from affected and unaffected family members. RESULTS: We found the heterozygous missense variant in the ɑ-kinase gene, ALPK1, (c.710C>T, [p.Thr237Met]), segregated with disease in all five families. All patients shared the ROSAH phenotype with additional low-grade ocular inflammation, pancytopenia, recurrent infections, and mild renal impairment in some. ALPK1 was notably expressed in retina, retinal pigment epithelium, and optic nerve, with immunofluorescence indicating localization to the basal body of the connecting cilium of the photoreceptors, and presence in the sweat glands. Immunocytofluorescence revealed expression at the centrioles and spindle poles during metaphase, and at the base of the primary cilium. Affected family member fibroblasts demonstrated defective ciliogenesis. CONCLUSION: Heterozygosity for ALPK1, p.Thr237Met leads to ROSAH syndrome, an autosomal dominant ocular systemic disorder.


Subject(s)
Optic Nerve/pathology , Protein Kinases/genetics , Retina/metabolism , Retinal Dystrophies/genetics , Exome/genetics , Female , Heterozygote , Humans , Hypohidrosis/genetics , Hypohidrosis/pathology , Male , Migraine Disorders/genetics , Migraine Disorders/pathology , Mutation, Missense/genetics , Optic Nerve/metabolism , Pedigree , Phenotype , Retina/pathology , Retinal Dystrophies/pathology , Splenomegaly/genetics , Splenomegaly/pathology
3.
Nat Commun ; 8: 14694, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28272467

ABSTRACT

Male-pattern baldness (MPB) is a common and highly heritable trait characterized by androgen-dependent, progressive hair loss from the scalp. Here, we carry out the largest GWAS meta-analysis of MPB to date, comprising 10,846 early-onset cases and 11,672 controls from eight independent cohorts. We identify 63 MPB-associated loci (P<5 × 10-8, METAL) of which 23 have not been reported previously. The 63 loci explain ∼39% of the phenotypic variance in MPB and highlight several plausible candidate genes (FGF5, IRF4, DKK2) and pathways (melatonin signalling, adipogenesis) that are likely to be implicated in the key-pathophysiological features of MPB and may represent promising targets for the development of novel therapeutic options. The data provide molecular evidence that rather than being an isolated trait, MPB shares a substantial biological basis with numerous other human phenotypes and may deserve evaluation as an early prognostic marker, for example, for prostate cancer, sudden cardiac arrest and neurodegenerative disorders.


Subject(s)
Alopecia/genetics , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/genetics , Adipogenesis/genetics , Case-Control Studies , Fibroblast Growth Factor 5/genetics , Genetic Association Studies , Genome-Wide Association Study , Genotype , Humans , Intercellular Signaling Peptides and Proteins/genetics , Interferon Regulatory Factors/genetics , Male , Melatonin , Membrane Proteins/genetics , Phenotype , Signal Transduction/genetics , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL