Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 631(8020): 378-385, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961292

ABSTRACT

The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints1-6. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons. We found that collicular motor units have poorly defined visual static spatial receptive fields and respond instead to kinetic visual features, revealing the existence of a direct alignment in vectorial space between sensory and movement vectors, rather than between spatial receptive fields and movement endpoints as canonically hypothesized. We show that a neural network built according to these kinetic alignment principles is ideally placed to sustain ethological behaviours such as the rapid interception of moving and static targets. These findings reveal a novel dimension of the sensorimotor alignment process. By extending the alignment from the static to the kinetic domain this work provides a novel conceptual framework for understanding the nature of sensorimotor convergence and its relevance in guiding goal-directed behaviours.


Subject(s)
Models, Neurological , Movement , Superior Colliculi , Visual Perception , Animals , Female , Male , Goals , Kinetics , Motor Neurons/physiology , Movement/physiology , Nerve Net/cytology , Nerve Net/physiology , Photic Stimulation , Psychomotor Performance/physiology , Reproducibility of Results , Superior Colliculi/cytology , Superior Colliculi/physiology , Visual Perception/physiology
2.
Nat Neurosci ; 27(7): 1340-1348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849521

ABSTRACT

When faced with a novel situation, people often spend substantial periods of time contemplating possible futures. For such planning to be rational, the benefits to behavior must compensate for the time spent thinking. Here, we capture these features of behavior by developing a neural network model where planning itself is controlled by the prefrontal cortex. This model consists of a meta-reinforcement learning agent augmented with the ability to plan by sampling imagined action sequences from its own policy, which we call 'rollouts'. In a spatial navigation task, the agent learns to plan when it is beneficial, which provides a normative explanation for empirical variability in human thinking times. Additionally, the patterns of policy rollouts used by the artificial agent closely resemble patterns of rodent hippocampal replays. Our work provides a theory of how the brain could implement planning through prefrontal-hippocampal interactions, where hippocampal replays are triggered by-and adaptively affect-prefrontal dynamics.


Subject(s)
Hippocampus , Neural Networks, Computer , Prefrontal Cortex , Humans , Hippocampus/physiology , Prefrontal Cortex/physiology , Models, Neurological , Thinking/physiology , Spatial Navigation/physiology , Reinforcement, Psychology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL