Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Mol Cell ; 84(12): 2337-2352.e9, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38870935

ABSTRACT

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.


Subject(s)
Polyubiquitin , Ribosomal Proteins , Ribosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Ribosomal Proteins/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Polyubiquitin/metabolism , Polyubiquitin/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Proteostasis , Cell Nucleus/metabolism
2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542224

ABSTRACT

Regulation of mRNA translation is a crucial step in controlling gene expression in stressed cells, impacting many pathologies, including heart ischemia. In recent years, ribosome heterogeneity has emerged as a key control mechanism driving the translation of subsets of mRNAs. In this study, we investigated variations in ribosome composition in human cardiomyocytes subjected to endoplasmic reticulum stress induced by tunicamycin treatment. Our findings demonstrate that this stress inhibits global translation in cardiomyocytes while activating internal ribosome entry site (IRES)-dependent translation. Analysis of translating ribosome composition in stressed and unstressed cardiomyocytes was conducted using mass spectrometry. We observed no significant changes in ribosomal protein composition, but several mitochondrial ribosomal proteins (MRPs) were identified in cytosolic polysomes, showing drastic variations between stressed and unstressed cells. The most notable increase in polysomes of stressed cells was observed in MRPS15. Its interaction with ribosomal proteins was confirmed by proximity ligation assay (PLA) and immunoprecipitation, suggesting its intrinsic role as a ribosomal component during stress. Knock-down or overexpression experiments of MRPS15 revealed its role as an activator of IRES-dependent translation. Furthermore, polysome profiling after immunoprecipitation with anti-MRPS15 antibody revealed that the "MRPS15 ribosome" is specialized in translating mRNAs involved in the unfolded protein response.


Subject(s)
Myocytes, Cardiac , Ribosomal Proteins , Humans , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Myocytes, Cardiac/metabolism , Ribosomes/metabolism , Polyribosomes/metabolism , Cytosol/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Internal Ribosome Entry Sites , Protein Biosynthesis
3.
Nucleic Acids Res ; 52(4): 1975-1987, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38113283

ABSTRACT

During ribosome biogenesis a plethora of assembly factors and essential enzymes drive the unidirectional maturation of nascent pre-ribosomal subunits. The DEAD-box RNA helicase Dbp10 is suggested to restructure pre-ribosomal rRNA of the evolving peptidyl-transferase center (PTC) on nucleolar ribosomal 60S assembly intermediates. Here, we show that point mutations within conserved catalytic helicase-core motifs of Dbp10 yield a dominant-lethal growth phenotype. Such dbp10 mutants, which stably associate with pre-60S intermediates, impair pre-60S biogenesis at a nucleolar stage prior to the release of assembly factor Rrp14 and stable integration of late nucleolar factors such as Noc3. Furthermore, the binding of the GTPase Nug1 to particles isolated directly via mutant Dbp10 bait proteins is specifically inhibited. The N-terminal domain of Nug1 interacts with Dbp10 and the methyltransferase Spb1, whose pre-60S incorporation is also reduced in absence of functional Dbp10 resulting in decreased methylation of 25S rRNA nucleotide G2922. Our data suggest that Dbp10's helicase activity generates the necessary framework for assembly factor docking thereby permitting PTC rRNA methylation and the progression of pre-60S maturation.


Subject(s)
Peptidyl Transferases , Saccharomyces cerevisiae Proteins , Peptidyl Transferases/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosomes/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
4.
J Exp Med ; 220(10)2023 10 02.
Article in English | MEDLINE | ID: mdl-37642996

ABSTRACT

Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.


Subject(s)
Cystic Fibrosis , Eukaryota , Humans , Peptide Elongation Factor 2 , Inflammasomes , Cytoplasm , NLR Proteins
5.
bioRxiv ; 2023 May 04.
Article in English | MEDLINE | ID: mdl-37205480

ABSTRACT

Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.

6.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834876

ABSTRACT

Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Ribosomes/metabolism , RNA, Ribosomal/metabolism , Nuclear Proteins/genetics , Ribosomal Proteins/metabolism , RNA Precursors/genetics
7.
Nucleic Acids Res ; 51(2): 744-764, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36610750

ABSTRACT

Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.


Subject(s)
DEAD-box RNA Helicases , Ribosomes , Saccharomyces cerevisiae Proteins , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Peptidyl Transferases/genetics , Peptidyl Transferases/metabolism , Ribosomes/genetics , Ribosomes/metabolism , RNA Helicases/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
Trends Biochem Sci ; 48(3): 213-215, 2023 03.
Article in English | MEDLINE | ID: mdl-36207216

ABSTRACT

A common aspect of ribosome assembly, conserved across all domains of life, is the establishment of connections between the 5' and 3' ends of the large subunit (LSU) ribosomal RNA (rRNA) to initiate rRNA domain compaction and subunit assembly. We discuss the diverse mechanisms employed in different organisms to accomplish this important event.


Subject(s)
RNA, Ribosomal , Saccharomyces cerevisiae Proteins , Ribosome Subunits, Large , Saccharomyces cerevisiae Proteins/genetics , Ribosomal Proteins/genetics
9.
Elife ; 112022 12 22.
Article in English | MEDLINE | ID: mdl-36546462

ABSTRACT

Internal ribosome entry sites (IRESs) drive translation initiation during stress. In response to hypoxia, (lymph)angiogenic factors responsible for tissue revascularization in ischemic diseases are induced by the IRES-dependent mechanism. Here, we searched for IRES trans-acting factors (ITAFs) active in early hypoxia in mouse cardiomyocytes. Using knock-down and proteomics approaches, we show a link between a stressed-induced nuclear body, the paraspeckle, and IRES-dependent translation. Furthermore, smiFISH experiments demonstrate the recruitment of IRES-containing mRNA into paraspeckle during hypoxia. Our data reveal that the long non-coding RNA Neat1, an essential paraspeckle component, is a key translational regulator, active on IRESs of (lymph)angiogenic and cardioprotective factor mRNAs. In addition, paraspeckle proteins p54nrb and PSPC1 as well as nucleolin and RPS2, two p54nrb-interacting proteins identified by mass spectrometry, are ITAFs for IRES subgroups. Paraspeckle thus appears as a platform to recruit IRES-containing mRNAs and possibly host IRESome assembly. Polysome PCR array shows that Neat1 isoforms regulate IRES-dependent translation and, more widely, translation of mRNAs involved in stress response.


Subject(s)
RNA, Long Noncoding , Animals , Mice , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Paraspeckles , Trans-Activators/metabolism , Polyribosomes/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Protein Biosynthesis
10.
Nucleic Acids Res ; 50(17): 10053-10077, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36018804

ABSTRACT

Eukaryotic ribosome synthesis involves more than 200 assembly factors, which promote ribosomal RNA (rRNA) processing, modification and folding, and assembly of ribosomal proteins. The formation and maturation of the earliest pre-60S particles requires structural remodeling by the Npa1 complex, but is otherwise still poorly understood. Here, we introduce Rbp95 (Ycr016w), a constituent of early pre-60S particles, as a novel ribosome assembly factor. We show that Rbp95 is both genetically and physically linked to most Npa1 complex members and to ribosomal protein Rpl3. We demonstrate that Rbp95 is an RNA-binding protein containing two independent RNA-interacting domains. In vivo, Rbp95 associates with helix H95 in the 3' region of the 25S rRNA, in close proximity to the binding sites of Npa1 and Rpl3. Additionally, Rbp95 interacts with several snoRNAs. The absence of Rbp95 results in alterations in the protein composition of early pre-60S particles. Moreover, combined mutation of Rbp95 and Npa1 complex members leads to a delay in the maturation of early pre-60S particles. We propose that Rbp95 acts together with the Npa1 complex during early pre-60S maturation, potentially by promoting pre-rRNA folding events within pre-60S particles.


Subject(s)
Nuclear Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic , Saccharomyces cerevisiae Proteins/metabolism , RNA Precursors/metabolism , RNA, Ribosomal/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae/genetics
11.
Front Mol Biosci ; 8: 778778, 2021.
Article in English | MEDLINE | ID: mdl-34765647

ABSTRACT

Ribosomal RNA (rRNA) production represents the most active transcription in the cell. Synthesis of the large rRNA precursors (35S/47S in yeast/human) is achieved by up to hundreds of RNA polymerase I (Pol I) enzymes simultaneously transcribing a single rRNA gene. In this review, we present recent advances in understanding the coupling between rRNA production and nascent rRNA folding. Mapping of the distribution of Pol I along ribosomal DNA at nucleotide resolution, using either native elongating transcript sequencing (NET-Seq) or crosslinking and analysis of cDNAs (CRAC), revealed frequent Pol I pausing, and CRAC results revealed a direct coupling between pausing and nascent RNA folding. High density of Pol I per gene imposes topological constraints that establish a defined pattern of polymerase distribution along the gene, with a persistent spacing between transcribing enzymes. RNA folding during transcription directly acts as an anti-pausing mechanism, implying that proper folding of the nascent rRNA favors elongation in vivo. Defects in co-transcriptional folding of rRNA are likely to induce Pol I pausing. We propose that premature termination of transcription, at defined positions, can control rRNA production in vivo.

12.
Nat Commun ; 12(1): 6153, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686656

ABSTRACT

Synthesis of eukaryotic ribosomes involves the assembly and maturation of precursor particles (pre-ribosomal particles) containing ribosomal RNA (rRNA) precursors, ribosomal proteins (RPs) and a plethora of assembly factors (AFs). Formation of the earliest precursors of the 60S ribosomal subunit (pre-60S r-particle) is among the least understood stages of ribosome biogenesis. It involves the Npa1 complex, a protein module suggested to play a key role in the early structuring of the pre-rRNA. Npa1 displays genetic interactions with the DExD-box protein Dbp7 and interacts physically with the snR190 box C/D snoRNA. We show here that snR190 functions as a snoRNA chaperone, which likely cooperates with the Npa1 complex to initiate compaction of the pre-rRNA in early pre-60S r-particles. We further show that Dbp7 regulates the dynamic base-pairing between snR190 and the pre-rRNA within the earliest pre-60S r-particles, thereby participating in structuring the peptidyl transferase center (PTC) of the large ribosomal subunit.


Subject(s)
DEAD-box RNA Helicases/metabolism , Molecular Chaperones/metabolism , RNA, Small Nucleolar/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Base Pairing , DEAD-box RNA Helicases/genetics , Molecular Chaperones/genetics , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Organelle Biogenesis , RNA Folding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Ribosomal/chemistry , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/genetics , Ribosome Subunits, Large, Eukaryotic/chemistry , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics
13.
Nat Commun ; 12(1): 6152, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34686661

ABSTRACT

Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5' and 3' ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation.


Subject(s)
DEAD-box RNA Helicases/metabolism , RNA, Ribosomal/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , DEAD-box RNA Helicases/genetics , Molecular Chaperones/metabolism , Nuclear Proteins/metabolism , RNA Folding , RNA Precursors/chemistry , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , RNA, Small Nucleolar/metabolism , Ribosomal Protein L3/metabolism , Ribosome Subunits, Large, Eukaryotic/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics
14.
Biomater Sci ; 9(22): 7444-7455, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34647546

ABSTRACT

The development of protein and microorganism engineering have led to rising expectations of biotechnology in the design of emerging biomaterials, putatively of high interest to reduce our dependence on fossil carbon resources. In this way, cellulose, a renewable carbon based polysaccharide and derived products, displays unique properties used in many industrial applications. Although the functionalization of cellulose is common, it is however limited in terms of number and type of functions. In this work, a Carbohydrate-Binding Module (CBM) was used as a central core to provide a versatile strategy to bring a large diversity of functions to cellulose surfaces. CBM3a from Clostridium thermocellum, which has a high affinity for crystalline cellulose, was flanked through linkers with a streptavidin domain and an azide group introduced through a non-canonical amino acid. Each of these two extra domains was effectively produced and functionalized with a variety of biological and chemical molecules. Structural properties of the resulting tripartite chimeric protein were investigated using molecular modelling approaches, and its potential for the multi-functionalization of cellulose was confirmed experimentally. As a proof of concept, we show that cellulose can be labelled with a fluorescent version of the tripartite protein grafted to magnetic beads and captured using a magnet.


Subject(s)
Clostridium thermocellum , Nanoparticles , Binding Sites , Cellulose , Polysaccharides
15.
PLoS Genet ; 17(6): e1009583, 2021 06.
Article in English | MEDLINE | ID: mdl-34125833

ABSTRACT

Ribosome biogenesis lies at the nexus of various signaling pathways coordinating protein synthesis with cell growth and proliferation. This process is regulated by well-described transcriptional mechanisms, but a growing body of evidence indicates that other levels of regulation exist. Here we show that the Ras/mitogen-activated protein kinase (MAPK) pathway stimulates post-transcriptional stages of human ribosome synthesis. We identify RIOK2, a pre-40S particle assembly factor, as a new target of the MAPK-activated kinase RSK. RIOK2 phosphorylation by RSK stimulates cytoplasmic maturation of late pre-40S particles, which is required for optimal protein synthesis and cell proliferation. RIOK2 phosphorylation facilitates its release from pre-40S particles and its nuclear re-import, prior to completion of small ribosomal subunits. Our results bring a detailed mechanistic link between the Ras/MAPK pathway and the maturation of human pre-40S particles, which opens a hitherto poorly explored area of ribosome biogenesis.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , HEK293 Cells , Humans , Mutation , Phosphorylation , Protein Transport , Ribosome Subunits, Small/metabolism , Signal Transduction , Substrate Specificity , Transcription, Genetic
16.
RNA Biol ; 18(4): 510-522, 2021 04.
Article in English | MEDLINE | ID: mdl-32882145

ABSTRACT

Prp43 is a DEAH-box RNA helicase involved in both splicing and ribosome biogenesis. Its activities are directly stimulated by several co-activators that share a G-patch domain. The substrates of Prp43, its mechanism of action and the modes of interaction with and activation by G-patch proteins have been only partially characterized. We investigated how Pfa1 and PINX1, two G-patch proteins involved in ribosome biogenesis, interact with Prp43. We demonstrate that a protruding loop connecting the ß4 and ß5 strands of Prp43 OB fold is crucial for the binding of the G-patch domain of Pfa1. However, neither this loop nor the entire OB fold of Prp43 is essential for PINX1 binding. We conclude that the binding modes of Pfa1 and PINX1 G-patches to Prp43 are different. Nevertheless, stimulation of the ATPase and helicase activities of Prp43 by both full-length Pfa1 and PINX1 requires the ß4-ß5 loop. Moreover, we show that disruption of this loop completely abrogates Prp43 activity during yeast ribosome biogenesis but does not prevent its integration within pre-ribosomal particles. We propose that the ß4-ß5 loop plays a crucial role in the transmission of conformational changes induced by binding of the G-patch to Prp43 active site and substrate RNA.


Subject(s)
DEAD-box RNA Helicases/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Catalytic Domain/genetics , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , Escherichia coli/genetics , Organisms, Genetically Modified , Protein Binding , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , RNA-Binding Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
17.
Elife ; 82019 12 09.
Article in English | MEDLINE | ID: mdl-31815666

ABSTRACT

Hypoxia, a major inducer of angiogenesis, triggers major changes in gene expression at the transcriptional level. Furthermore, under hypoxia, global protein synthesis is blocked while internal ribosome entry sites (IRES) allow specific mRNAs to be translated. Here, we report the transcriptome and translatome signatures of (lymph)angiogenic genes in hypoxic HL-1 mouse cardiomyocytes: most genes are induced at the translatome level, including all IRES-containing mRNAs. Our data reveal activation of (lymph)angiogenic factor mRNA IRESs in early hypoxia. We identify vasohibin1 (VASH1) as an IRES trans-acting factor (ITAF) that is able to bind RNA and to activate the FGF1 IRES in hypoxia, but which tends to inhibit several IRESs in normoxia. VASH1 depletion has a wide impact on the translatome of (lymph)angiogenesis genes, suggesting that this protein can regulate translation positively or negatively in early hypoxia. Translational control thus appears as a pivotal process triggering new vessel formation in ischemic heart.


Subject(s)
Cell Cycle Proteins/metabolism , Hypoxia/metabolism , Internal Ribosome Entry Sites/physiology , Myocytes, Cardiac/metabolism , Trans-Activators/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Line , Humans , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , RNA, Messenger/metabolism , RNA-Binding Motifs , Transcriptome
18.
PLoS Genet ; 15(5): e1008157, 2019 05.
Article in English | MEDLINE | ID: mdl-31136569

ABSTRACT

Most transcriptional activity of exponentially growing cells is carried out by the RNA Polymerase I (Pol I), which produces a ribosomal RNA (rRNA) precursor. In budding yeast, Pol I is a multimeric enzyme with 14 subunits. Among them, Rpa49 forms with Rpa34 a Pol I-specific heterodimer (homologous to PAF53/CAST heterodimer in human Pol I), which might be responsible for the specific functions of the Pol I. Previous studies provided insight in the involvement of Rpa49 in initiation, elongation, docking and releasing of Rrn3, an essential Pol I transcription factor. Here, we took advantage of the spontaneous occurrence of extragenic suppressors of the growth defect of the rpa49 null mutant to better understand the activity of Pol I. Combining genetic approaches, biochemical analysis of rRNA synthesis and investigation of the transcription rate at the individual gene scale, we characterized mutated residues of the Pol I as novel extragenic suppressors of the growth defect caused by the absence of Rpa49. When mapped on the Pol I structure, most of these mutations cluster within the jaw-lobe module, at an interface formed by the lobe in Rpa135 and the jaw made up of regions of Rpa190 and Rpa12. In vivo, the suppressor allele RPA135-F301S restores normal rRNA synthesis and increases Pol I density on rDNA genes when Rpa49 is absent. Growth of the Rpa135-F301S mutant is impaired when combined with exosome mutation rrp6Δ and it massively accumulates pre-rRNA. Moreover, Pol I bearing Rpa135-F301S is a hyper-active RNA polymerase in an in vitro tailed-template assay. We conclude that RNA polymerase I can be engineered to produce more rRNA in vivo and in vitro. We propose that the mutated area undergoes a conformational change that supports the DNA insertion into the cleft of the enzyme resulting in a super-active form of Pol I.


Subject(s)
Pol1 Transcription Initiation Complex Proteins/genetics , RNA Polymerase I/genetics , DNA, Ribosomal/genetics , Pol1 Transcription Initiation Complex Proteins/metabolism , RNA Precursors/genetics , RNA, Ribosomal , Ribosomes/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors/genetics , Transcription, Genetic
19.
Elife ; 82019 05 24.
Article in English | MEDLINE | ID: mdl-31124783

ABSTRACT

Ribosome biogenesis is a complex and energy-demanding process requiring tight coordination of ribosomal RNA (rRNA) and ribosomal protein (RP) production. Given the extremely high level of RP synthesis in rapidly growing cells, alteration of any step in the ribosome assembly process may impact growth by leading to proteotoxic stress. Although the transcription factor Hsf1 has emerged as a central regulator of proteostasis, how its activity is coordinated with ribosome biogenesis is unknown. Here, we show that arrest of ribosome biogenesis in the budding yeast Saccharomyces cerevisiae triggers rapid activation of a highly specific stress pathway that coordinately upregulates Hsf1 target genes and downregulates RP genes. Activation of Hsf1 target genes requires neo-synthesis of RPs, which accumulate in an insoluble fraction and presumably titrate a negative regulator of Hsf1, the Hsp70 chaperone. RP aggregation is also coincident with that of the RP gene activator Ifh1, a transcription factor that is rapidly released from RP gene promoters. Our data support a model in which the levels of newly synthetized RPs, imported into the nucleus but not yet assembled into ribosomes, work to continuously balance Hsf1 and Ifh1 activity, thus guarding against proteotoxic stress during ribosome assembly.


Subject(s)
Organelle Biogenesis , Proteostasis , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae/physiology , Stress, Physiological , Transcription, Genetic , Gene Expression Regulation, Fungal
20.
Gene ; 702: 215-219, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-30611841

ABSTRACT

The eleventh international conference on transcription by RNA polymerases I, III, IV and V (the OddPols) was held from June 26th to June 29th 2018 at the Museum of Natural History of Toulouse, France and organized by Anthony Henras and Olivier Gadal. The scientific committee was composed of David Engelke, Joachim Griesenbeck, Ross Hannan, Deborah Johnson, Richard Maraia, Christoph Müller, Craig Pikaard, David Schneider and Ian Willis. The organizers are grateful to the "Centre de Biologie Intégrative de Toulouse", for support in the organization of the event. Participants from 13 different countries presented their newest exciting results during the scientific sessions and during extended conversation hours in the cosy atmosphere of the botanic garden of the Museum. Here we present the highlights of all oral presentations.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Transcription, Genetic , Gene Expression Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...