Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Cells ; 12(3)2023 01 21.
Article in English | MEDLINE | ID: mdl-36766731

ABSTRACT

MicroRNA 193a-3p (miR193a-3p) is a short non-coding RNA with tumor suppressor properties. Breast cancer (BC) progression is governed by active interaction between breast cancer cells, vascular (V)/lymphatic (L) endothelial cells (ECs), and BC secretome. We have recently shown that miR193a-3p, a tumor suppressor miRNA, inhibits MCF-7 BC cell-driven growth of VECs via direct antimitogenic actions and alters MCF-7 secretome. Since LEC-BC cross-talk plays a key role in BC progression, we investigated the effects of miR193a-3p on MCF-7 secretome and estradiol-mediated growth effects in LECs and LEC + MCF-7 spheroids, and delineated the underlying mechanisms. Transfection of LECs with miR193a-3p, as well as secretome from MCF-7 transfected cells, inhibited LEC growth, and these effects were mimicked in LEC + MCF-7 spheroids. Moreover, miR193a-3p inhibited ERK1/2 and Akt phosphorylation in LECs and LEC + MCF-7 spheroids, which are importantly involved in promoting cancer development and metastasis. Treatment of LECs and LEC + MCF-7 spheroids with estradiol (E2)-induced growth, as well as ERK1/2 and Akt phosphorylation, and was abrogated by miR193a-3p and secretome from MCF-7 transfected cells. Gene expression analysis (GEA) in LEC + MCF-7 spheroids transfected with miR193a-3p showed significant upregulation of 54 genes and downregulation of 73 genes. Pathway enrichment analysis of regulated genes showed significant modulation of several pathways, including interferon, interleukin/cytokine-mediated signaling, innate immune system, ERK1/2 cascade, apoptosis, and estrogen receptor signaling. Transcriptomic analysis showed downregulation in interferon and anti-apoptotic and pro-growth molecules, such as IFI6, IFIT1, OSA1/2, IFITM1, HLA-A/B, PSMB8/9, and PARP9, which are known to regulate BC progression. The cytokine proteome array of miR193a-3p transfected MCF secretome and confirmed the upregulation of several growth inhibitory cytokines, including IFNγ, Il-1a, IL-1ra, IL-32, IL-33, IL-24, IL-27, cystatin, C-reactive protein, Fas ligand, MIG, and sTIM3. Moreover, miR193a-3p alters factors in MCF-7 secretome, which represses ERK1/2 and Akt phosphorylation, induces pro-apoptotic protein and apoptosis in LECs, and downregulates interferon-associated proteins known to promote cancer growth and metastasis. In conclusion, miR193a-3p can potentially modify the tumor microenvironment by altering pro-growth BC secretome and inhibiting LEC growth, and may represent a therapeutic molecule to target breast tumors/cancer.


Subject(s)
Breast Neoplasms , Transcriptome , Female , Humans , Breast Neoplasms/pathology , Cytokines/metabolism , Endothelial Cells/metabolism , Estradiol/pharmacology , Estradiol/metabolism , Gene Expression Profiling , Interferons/metabolism , MCF-7 Cells , Proto-Oncogene Proteins c-akt/metabolism , Secretome , Tumor Microenvironment
2.
Cells ; 11(21)2022 10 27.
Article in English | MEDLINE | ID: mdl-36359802

ABSTRACT

Human-relevant tests to predict developmental toxicity are urgently needed. A currently intensively studied approach makes use of differentiating human stem cells to measure chemically-induced deviations of the normal developmental program, as in a recent study based on cardiac differentiation (UKK2). Here, we (i) tested the performance of an assay modeling neuroepithelial differentiation (UKN1), and (ii) explored the benefit of combining assays (UKN1 and UKK2) that model different germ layers. Substance-induced cytotoxicity and genome-wide expression profiles of 23 teratogens and 16 non-teratogens at human-relevant concentrations were generated and used for statistical classification, resulting in accuracies of the UKN1 assay of 87-90%. A comparison to the UKK2 assay (accuracies of 90-92%) showed, in general, a high congruence in compound classification that may be explained by the fact that there was a high overlap of signaling pathways. Finally, the combination of both assays improved the prediction compared to each test alone, and reached accuracies of 92-95%. Although some compounds were misclassified by the individual tests, we conclude that UKN1 and UKK2 can be used for a reliable detection of teratogens in vitro, and that a combined analysis of tests that differentiate hiPSCs into different germ layers and cell types can even further improve the prediction of developmental toxicants.


Subject(s)
Teratogens , Toxicity Tests , Humans , Teratogens/toxicity , Cell Differentiation , Stem Cells , In Vitro Techniques
3.
Chem Res Toxicol ; 35(5): 760-773, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35416653

ABSTRACT

Despite the progress made in developmental toxicology, there is a great need for in vitro tests that identify developmental toxicants in relation to human oral doses and blood concentrations. In the present study, we established the hiPSC-based UKK2 in vitro test and analyzed genome-wide expression profiles of 23 known teratogens and 16 non-teratogens. Compounds were analyzed at the maximal plasma concentration (Cmax) and at 20-fold Cmax for a 24 h incubation period in three independent experiments. Based on the 1000 probe sets with the highest variance and including information on cytotoxicity, penalized logistic regression with leave-one-out cross-validation was used to classify the compounds as test-positive or test-negative, reaching an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.96, 0.92, 0.96, and 0.88, respectively. Omitting the cytotoxicity information reduced the test performance to an AUC of 0.94, an accuracy of 0.79, and a sensitivity of 0.74. A second method, which used the number of significantly deregulated probe sets to classify the compounds, resulted in a specificity of 1; however, the AUC (0.90), accuracy (0.90), and sensitivity (0.83) were inferior compared to those of the logistic regression-based procedure. Finally, no increased performance was achieved when the high test concentrations (20-fold Cmax) were used, in comparison to testing within the realistic clinical range (1-fold Cmax). In conclusion, although further optimization is required, for example, by including additional readouts and cell systems that model different developmental processes, the UKK2-test in its present form can support the early discovery-phase detection of human developmental toxicants.


Subject(s)
Induced Pluripotent Stem Cells , Transcriptome , Hazardous Substances , Humans , In Vitro Techniques , Teratogens
4.
Nucleic Acids Res ; 48(22): 12577-12592, 2020 12 16.
Article in English | MEDLINE | ID: mdl-33245762

ABSTRACT

Thousands of transcriptome data sets are available, but approaches for their use in dynamic cell response modelling are few, especially for processes affected simultaneously by two orthogonal influencing variables. We approached this problem for neuroepithelial development of human pluripotent stem cells (differentiation variable), in the presence or absence of valproic acid (signaling variable). Using few basic assumptions (sequential differentiation states of cells; discrete on/off states for individual genes in these states), and time-resolved transcriptome data, a comprehensive model of spontaneous and perturbed gene expression dynamics was developed. The model made reliable predictions (average correlation of 0.85 between predicted and subsequently tested expression values). Even regulations predicted to be non-monotonic were successfully validated by PCR in new sets of experiments. Transient patterns of gene regulation were identified from model predictions. They pointed towards activation of Wnt signaling as a candidate pathway leading to a redirection of differentiation away from neuroepithelial cells towards neural crest. Intervention experiments, using a Wnt/beta-catenin antagonist, led to a phenotypic rescue of this disturbed differentiation. Thus, our broadly applicable model allows the analysis of transcriptome changes in complex time/perturbation matrices.


Subject(s)
Cell Differentiation/genetics , Pluripotent Stem Cells/cytology , Transcriptome/genetics , Gene Expression Regulation, Developmental/genetics , Humans , Wnt Signaling Pathway/genetics
5.
Cells ; 9(7)2020 07 09.
Article in English | MEDLINE | ID: mdl-32660081

ABSTRACT

To understand the mechanisms of disturbed differentiation and development by radiation, murine CGR8 embryonic stem cells (mESCs) were exposed to ionizing radiation and differentiated by forming embryoid bodies (EBs). The colony forming ability test was applied for survival and the MTT test for viability determination after X-irradiation. Cell cycle progression was determined by flow cytometry of propidium iodide-stained cells, and DNA double strand break (DSB) induction and repair by γH2AX immunofluorescence. The radiosensitivity of mESCs was slightly higher compared to the murine osteoblast cell line OCT-1. The viability 72 h after X-irradiation decreased dose-dependently and was higher in the presence of leukemia inhibitory factor (LIF). Cells exposed to 2 or 7 Gy underwent a transient G2 arrest. X-irradiation induced γH2AX foci and they disappeared within 72 h. After 72 h of X-ray exposure, RNA was isolated and analyzed using genome-wide microarrays. The gene expression analysis revealed amongst others a regulation of developmental genes (Ada, Baz1a, Calcoco2, Htra1, Nefh, S100a6 and Rassf6), downregulation of genes involved in glycolysis and pyruvate metabolism whereas upregulation of genes related to the p53 signaling pathway. X-irradiated mESCs formed EBs and differentiated toward cardiomyocytes but their beating frequencies were lower compared to EBs from unirradiated cells. These results suggest that X-irradiation of mESCs deregulate genes related to the developmental process. The most significant biological processes found to be altered by X-irradiation in mESCs were the development of cardiovascular, nervous, circulatory and renal system. These results may explain the X-irradiation induced-embryonic lethality and malformations observed in animal studies.


Subject(s)
Mouse Embryonic Stem Cells/radiation effects , Animals , Cell Cycle , Cell Differentiation , Cell Line , Cells, Cultured , DNA Breaks, Double-Stranded , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Myocytes, Cardiac/cytology , Transcriptome , X-Rays
6.
Arch Toxicol ; 94(1): 151-171, 2020 01.
Article in English | MEDLINE | ID: mdl-31712839

ABSTRACT

The first in vitro tests for developmental toxicity made use of rodent cells. Newer teratology tests, e.g. developed during the ESNATS project, use human cells and measure mechanistic endpoints (such as transcriptome changes). However, the toxicological implications of mechanistic parameters are hard to judge, without functional/morphological endpoints. To address this issue, we developed a new version of the human stem cell-based test STOP-tox(UKN). For this purpose, the capacity of the cells to self-organize to neural rosettes was assessed as functional endpoint: pluripotent stem cells were allowed to differentiate into neuroepithelial cells for 6 days in the presence or absence of toxicants. Then, both transcriptome changes were measured (standard STOP-tox(UKN)) and cells were allowed to form rosettes. After optimization of staining methods, an imaging algorithm for rosette quantification was implemented and used for an automated rosette formation assay (RoFA). Neural tube toxicants (like valproic acid), which are known to disturb human development at stages when rosette-forming cells are present, were used as positive controls. Established toxicants led to distinctly different tissue organization and differentiation stages. RoFA outcome and transcript changes largely correlated concerning (1) the concentration-dependence, (2) the time dependence, and (3) the set of positive hits identified amongst 24 potential toxicants. Using such comparative data, a prediction model for the RoFA was developed. The comparative analysis was also used to identify gene dysregulations that are particularly predictive for disturbed rosette formation. This 'RoFA predictor gene set' may be used for a simplified and less costly setup of the STOP-tox(UKN) assay.


Subject(s)
Neural Stem Cells/drug effects , Neurodevelopmental Disorders/chemically induced , Neurotoxins/pharmacology , Rosette Formation/methods , Toxicity Tests/methods , Cell Differentiation/drug effects , Gene Expression Regulation/drug effects , Humans , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Oligonucleotide Array Sequence Analysis , Time Factors
7.
Stem Cells Dev ; 27(12): 838-847, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29630478

ABSTRACT

Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of short-term altered gravity on embryonic development processes, we exposed mouse embryonic stem cells (mESCs) to phases of hypergravity and microgravity and studied the differentiation potential of the cells using wide-genome microarray analysis. During the 64th European Space Agency's parabolic flight campaign, mESCs were exposed to 31 parabolas. Each parabola comprised phases lasting 22 s of hypergravity, microgravity, and a repeat of hypergravity. On different parabolas, RNA was isolated for microarray analysis. After exposure to 31 parabolas, mESCs (P31 mESCs) were further differentiated under normal gravity (1 g) conditions for 12 days, producing P31 12-day embryoid bodies (EBs). After analysis of the microarrays, the differentially expressed genes were analyzed using different bioinformatic tools to identify developmental and nondevelopmental biological processes affected by conditions on the parabolic flight experiment. Our results demonstrated that several genes belonging to GOs associated with cell cycle and proliferation were downregulated in undifferentiated mESCs exposed to gravity changes. However, several genes belonging to developmental processes, such as vasculature development, kidney development, skin development, and to the TGF-ß signaling pathway, were upregulated. Interestingly, similar enriched and suppressed GOs were obtained in P31 12-day EBs compared with ground control 12-day EBs. Our results show that undifferentiated mESCs exposed to alternate hypergravity and microgravity phases expressed several genes associated with developmental/differentiation and cell cycle processes, suggesting a transition from the undifferentiated pluripotent to a more differentiated stage of mESCs.


Subject(s)
Cell Cycle , Cell Differentiation , Hypergravity/adverse effects , Mouse Embryonic Stem Cells/metabolism , Signal Transduction , Weightlessness/adverse effects , Animals , Cell Line , Embryoid Bodies/metabolism , Embryoid Bodies/pathology , Mice
8.
PLoS One ; 13(3): e0194428, 2018.
Article in English | MEDLINE | ID: mdl-29543863

ABSTRACT

In skeletal muscle the coordinated actions of two mechanically coupled Ca2+ channels-the 1,4-dihydropyridine receptor (Cav1.1) and the type 1 ryanodine receptor (RYR1)-underlie the molecular mechanism of rapid cytosolic [Ca2+] increase leading to contraction. While both [Ca2+]i and contractile activity have been implicated in the regulation of myogenesis, less is known about potential specific roles of Cav1.1 and RYR1 in skeletal muscle development. In this study, we analyzed the histology and the transcriptomic changes occurring at E14.5 -the end of primary myogenesis and around the onset of intrauterine limb movement, and at E18.5 -the end of secondary myogenesis, in WT, RYR1-/-, and Cav1.1-/- murine limb skeletal muscle. At E14.5 the muscle histology of both mutants exhibited initial alterations, which became much more severe at E18.5. Immunohistological analysis also revealed higher levels of activated caspase-3 in the Cav1.1-/- muscles at E14.5, indicating an increase in apoptosis. With WT littermates as controls, microarray analyses identified 61 and 97 differentially regulated genes (DEGs) at E14.5, and 493 and 1047 DEGs at E18.5, in RYR1-/- and Cav1.1-/- samples, respectively. Gene enrichment analysis detected no overlap in the affected biological processes and pathways in the two mutants at E14.5, whereas at E18.5 there was a significant overlap of DEGs in both mutants, affecting predominantly processes linked to muscle contraction. Moreover, the E18.5 vs. E14.5 comparison revealed multiple genotype-specific DEGs involved in contraction, cell cycle and miRNA-mediated signaling in WT, neuronal and bone development in RYR1-/-, and lipid metabolism in Cav1.1-/- samples. Taken together, our study reveals discrete changes in the global transcriptome occurring in limb skeletal muscle from E14.5 to E18.5 in WT, RYR1-/- and Cav1.1-/- mice. Our results suggest distinct functional roles for RYR1 and Cav1.1 in skeletal primary and secondary myogenesis.


Subject(s)
Calcium Channels, L-Type/genetics , Gene Expression Regulation, Developmental , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/genetics , Transcriptome , Animals , Calcium Channels, L-Type/deficiency , Gene Ontology , Hindlimb/embryology , Hindlimb/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle Development/genetics , Muscle, Skeletal/embryology , Ryanodine Receptor Calcium Release Channel/deficiency , Time Factors
9.
Chem Res Toxicol ; 30(4): 905-922, 2017 04 17.
Article in English | MEDLINE | ID: mdl-28001369

ABSTRACT

Analysis of transcriptome changes has become an established method to characterize the reaction of cells to toxicants. Such experiments are mostly performed at compound concentrations close to the cytotoxicity threshold. At present, little information is available on concentration-dependent features of transcriptome changes, in particular, at the transition from noncytotoxic concentrations to conditions that are associated with cell death. Thus, it is unclear in how far cell death confounds the results of transcriptome studies. To explore this gap of knowledge, we treated pluripotent stem cells differentiating to human neuroepithelial cells (UKN1 assay) for short periods (48 h) with increasing concentrations of valproic acid (VPA) and methyl mercury (MeHg), two compounds with vastly different modes of action. We developed various visualization tools to describe cellular responses, and the overall response was classified as "tolerance" (minor transcriptome changes), "functional adaptation" (moderate/strong transcriptome responses, but no cytotoxicity), and "degeneration". The latter two conditions were compared, using various statistical approaches. We identified (i) genes regulated at cytotoxic, but not at noncytotoxic, concentrations and (ii) KEGG pathways, gene ontology term groups, and superordinate biological processes that were only regulated at cytotoxic concentrations. The consensus markers and processes found after 48 h treatment were then overlaid with those found after prolonged (6 days) treatment. The study highlights the importance of careful concentration selection and of controlling viability for transcriptome studies. Moreover, it allowed identification of 39 candidate "biomarkers of cytotoxicity". These could serve to provide alerts that data sets of interest may have been affected by cell death in the model system studied.


Subject(s)
Methylmercury Compounds/toxicity , Transcriptome/drug effects , Valproic Acid/toxicity , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line , Down-Regulation/drug effects , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/drug effects , Human Embryonic Stem Cells/metabolism , Humans , Neurons/cytology , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Principal Component Analysis , Signal Transduction/drug effects , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects
10.
Cell Physiol Biochem ; 38(4): 1483-99, 2016.
Article in English | MEDLINE | ID: mdl-27035921

ABSTRACT

BACKGROUND/AIMS: Embryonic developmental studies under microgravity conditions in space are very limited. To study the effects of altered gravity on the embryonic development processes we established an in vitro methodology allowing differentiation of mouse embryonic stem cells (mESCs) under simulated microgravity within a fast-rotating clinostat (clinorotation) and capture of microarray-based gene signatures. METHODS: The differentiating mESCs were cultured in a 2D pipette clinostat. The microarray and bioinformatics tools were used to capture genes that are deregulated by simulated microgravity and their impact on developmental biological processes. RESULTS: The data analysis demonstrated that differentiation of mESCs in pipettes for 3 days resultet to early germ layer differentiation and then to the different somatic cell types after further 7 days of differentiation in the Petri dishes. Clinorotation influences differentiation as well as non-differentiation related biological processes like cytoskeleton related 19 genes were modulated. Notably, simulated microgravity deregulated genes Cyr61, Thbs1, Parva, Dhrs3, Jun, Tpm1, Fzd2 and Dll1 are involved in heart morphogenesis as an acute response on day 3. If the stem cells were further cultivated under normal gravity conditions (1 g) after clinorotation, the expression of cardiomyocytes specific genes such as Tnnt2, Rbp4, Tnni1, Csrp3, Nppb and Mybpc3 on day 10 was inhibited. This correlated well with a decreasing beating activity of the 10-days old embryoid bodies (EBs). Finally, we captured Gadd45g, Jun, Thbs1, Cyr61and Dll1 genes whose expressions were modulated by simulated microgravity and by real microgravity in various reported studies. Simulated microgravity also deregulated genes belonging to the MAP kinase and focal dhesion signal transduction pathways. CONCLUSION: One of the most prominent biological processes affected by simulated microgravity was the process of cardiomyogenesis. The most significant simulated microgravity-affected genes, signal transduction pathways, and biological processes which are relevant for mESCs differentiation have been identified and discussed below.


Subject(s)
Cell Differentiation , Weightlessness Simulation , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Cycle Checkpoints , Cysteine-Rich Protein 61/genetics , Cysteine-Rich Protein 61/metabolism , Embryoid Bodies/physiology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Myocytes, Cardiac/metabolism , Real-Time Polymerase Chain Reaction , Retinol-Binding Proteins, Plasma/genetics , Retinol-Binding Proteins, Plasma/metabolism , Transcriptome , Tropomyosin/genetics , Tropomyosin/metabolism , Troponin T/genetics , Troponin T/metabolism
11.
Stem Cells Transl Med ; 5(4): 476-87, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26933043

ABSTRACT

UNLABELLED: Safety sciences and the identification of chemical hazards have been seen as one of the most immediate practical applications of human pluripotent stem cell technology. Protocols for the generation of many desirable human cell types have been developed, but optimization of neuronal models for toxicological use has been astonishingly slow, and the wide, clinically important field of peripheral neurotoxicity is still largely unexplored. A two-step protocol to generate large lots of identical peripheral human neuronal precursors was characterized and adapted to the measurement of peripheral neurotoxicity. High content imaging allowed an unbiased assessment of cell morphology and viability. The computational quantification of neurite growth as a functional parameter highly sensitive to disturbances by toxicants was used as an endpoint reflecting specific neurotoxicity. The differentiation of cells toward dorsal root ganglia neurons was tracked in relation to a large background data set based on gene expression microarrays. On this basis, a peripheral neurotoxicity (PeriTox) test was developed as a first toxicological assay that harnesses the potential of human pluripotent stem cells to generate cell types/tissues that are not otherwise available for the prediction of human systemic organ toxicity. Testing of more than 30 chemicals showed that human neurotoxicants and neurite growth enhancers were correctly identified. Various classes of chemotherapeutic agents causing human peripheral neuropathies were identified, and they were missed when tested on human central neurons. The PeriTox test we established shows the potential of human stem cells for clinically relevant safety testing of drugs in use and of new emerging candidates. SIGNIFICANCE: The generation of human cells from pluripotent stem cells has aroused great hopes in biomedical research and safety sciences. Neurotoxicity testing is a particularly important application for stem cell-derived somatic cells, as human neurons are hardly available otherwise. Also, peripheral neurotoxicity has become of major concern in drug development for chemotherapy. The first neurotoxicity test method was established based on human pluripotent stem cell-derived peripheral neurons. The strategies exemplified in the present study of reproducible cell generation, cell function-based test system establishment, and assay validation provide the basis for a drug safety assessment on cells not available otherwise.


Subject(s)
Environmental Pollutants/toxicity , Ganglia, Spinal/cytology , Neural Stem Cells/physiology , Neurons/drug effects , Neurons/physiology , Toxicity Tests/methods , Animals , Cell Differentiation/drug effects , Cells, Cultured , Humans , Mice , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurites/drug effects , Neurites/physiology , Neurogenesis/drug effects , Neurons/cytology , Peripheral Nerves/drug effects , Peripheral Nerves/physiology , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/physiology , Rotenone/toxicity
12.
Stem Cell Res Ther ; 7(1): 190, 2016 12 30.
Article in English | MEDLINE | ID: mdl-28038682

ABSTRACT

BACKGROUND: Human embryonic stem cells (hESCs) partially recapitulate early embryonic three germ layer development, allowing testing of potential teratogenic hazards. Because use of hESCs is ethically debated, we investigated the potential for human induced pluripotent stem cells (hiPSCs) to replace hESCs in such tests. METHODS: Three cell lines, comprising hiPSCs (foreskin and IMR90) and hESCs (H9) were differentiated for 14 days. Their transcriptome profiles were obtained on day 0 and day 14 and analyzed by comprehensive bioinformatics tools. RESULTS: The transcriptomes on day 14 showed that more than 70% of the "developmental genes" (regulated genes with > 2-fold change on day 14 compared to day 0) exhibited variability among cell lines. The developmental genes belonging to all three cell lines captured biological processes and KEGG pathways related to all three germ layer embryonic development. In addition, transcriptome profiles were obtained after 14 days of exposure to teratogenic valproic acid (VPA) during differentiation. Although the differentially regulated genes between treated and untreated samples showed more than 90% variability among cell lines, VPA clearly antagonized the expression of developmental genes in all cell lines: suppressing upregulated developmental genes, while inducing downregulated ones. To quantify VPA-disturbed development based on developmental genes, we estimated the "developmental potency" (D p ) and "developmental index" (D i ). CONCLUSIONS: Despite differences in genes deregulated by VPA, uniform D i values were obtained for all three cell lines. Given that the D i values for VPA were similar for hESCs and hiPSCs, D i can be used for robust hazard identification, irrespective of whether hESCs or hiPSCs are used in the test systems.


Subject(s)
Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Teratogens/pharmacology , Transcriptome/drug effects , Cell Differentiation/drug effects , Cell Line , Down-Regulation/drug effects , Germ Layers/cytology , Germ Layers/drug effects , Humans , Up-Regulation/drug effects
13.
Glia ; 64(5): 695-715, 2016 May.
Article in English | MEDLINE | ID: mdl-26689134

ABSTRACT

Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features.


Subject(s)
Astrocytes/physiology , Cell Differentiation/physiology , Embryonic Stem Cells/physiology , Neural Stem Cells/physiology , Animals , Aquaporin 4/genetics , Aquaporin 4/metabolism , Bone Morphogenetic Protein 4/genetics , Bone Morphogenetic Protein 4/metabolism , Cells, Cultured , Cytokines/metabolism , Cytokines/pharmacology , Embryo, Mammalian , Excitatory Amino Acid Transporter 2/genetics , Excitatory Amino Acid Transporter 2/metabolism , Glial Fibrillary Acidic Protein/genetics , Glial Fibrillary Acidic Protein/metabolism , Glucose/metabolism , Glutamic Acid/metabolism , Ki-67 Antigen/metabolism , Lactic Acid/metabolism , Mice , Mice, Inbred BALB C , Nestin/metabolism , Time Factors , Transcriptome/physiology
14.
Arch Toxicol ; 90(1): 159-80, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26705709

ABSTRACT

The in vitro test battery of the European research consortium ESNATS ('novel stem cell-based test systems') has been used to screen for potential human developmental toxicants. As part of this effort, the migration of neural crest (MINC) assay has been used to evaluate chemical effects on neural crest function. It identified some drug-like compounds in addition to known environmental toxicants. The hits included the HSP90 inhibitor geldanamycin, the chemotherapeutic arsenic trioxide, the flame-retardant PBDE-99, the pesticide triadimefon and the histone deacetylase inhibitors valproic acid and trichostatin A. Transcriptome changes triggered by these substances in human neural crest cells were recorded and analysed here to answer three questions: (1) can toxicants be individually identified based on their transcript profile; (2) how can the toxicity pattern reflected by transcript changes be compacted/dimensionality-reduced for practical regulatory use; (3) how can a reduced set of biomarkers be selected for large-scale follow-up? Transcript profiling allowed clear separation of different toxicants and the identification of toxicant types in a blinded test study. We also developed a diagrammatic system to visualize and compare toxicity patterns of a group of chemicals by giving a quantitative overview of altered superordinate biological processes (e.g. activation of KEGG pathways or overrepresentation of gene ontology terms). The transcript data were mined for potential markers of toxicity, and 39 transcripts were selected to either indicate general developmental toxicity or distinguish compounds with different modes-of-action in read-across. In summary, we found inclusion of transcriptome data to largely increase the information from the MINC phenotypic test.


Subject(s)
Cell Movement/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation, Developmental/drug effects , Neural Crest/drug effects , Neural Stem Cells/drug effects , Toxicity Tests/methods , Animal Testing Alternatives , Cell Line , Cell Movement/genetics , Computational Biology , Data Mining , Databases, Genetic , Genetic Markers , Humans , Neural Crest/metabolism , Neural Crest/pathology , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Oligonucleotide Array Sequence Analysis , Risk Assessment , Time Factors
15.
Arch Toxicol ; 88(7): 1451-68, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24935251

ABSTRACT

The superordinate principles governing the transcriptome response of differentiating cells exposed to drugs are still unclear. Often, it is assumed that toxicogenomics data reflect the immediate mode of action (MoA) of drugs. Alternatively, transcriptome changes could describe altered differentiation states as indirect consequence of drug exposure. We used here the developmental toxicants valproate and trichostatin A to address this question. Neurally differentiating human embryonic stem cells were treated for 6 days. Histone acetylation (primary MoA) increased quickly and returned to baseline after 48 h. Histone H3 lysine methylation at the promoter of the neurodevelopmental regulators PAX6 or OTX2 was increasingly altered over time. Methylation changes remained persistent and correlated with neurodevelopmental defects and with effects on PAX6 gene expression, also when the drug was washed out after 3-4 days. We hypothesized that drug exposures altering only acetylation would lead to reversible transcriptome changes (indicating MoA), and challenges that altered methylation would lead to irreversible developmental disturbances. Data from pulse-chase experiments corroborated this assumption. Short drug treatment triggered reversible transcriptome changes; longer exposure disrupted neurodevelopment. The disturbed differentiation was reflected by an altered transcriptome pattern, and the observed changes were similar when the drug was washed out during the last 48 h. We conclude that transcriptome data after prolonged chemical stress of differentiating cells mainly reflect the altered developmental stage of the model system and not the drug MoA. We suggest that brief exposures, followed by immediate analysis, are more suitable for information on immediate drug responses and the toxicity MoA.


Subject(s)
Embryonic Stem Cells/cytology , Histones/metabolism , Hydroxamic Acids/toxicity , Valproic Acid/toxicity , Acetylation/drug effects , Cell Differentiation/drug effects , Epigenesis, Genetic , Eye Proteins/genetics , Gene Expression Regulation/drug effects , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/toxicity , Homeodomain Proteins/genetics , Humans , Hydroxamic Acids/administration & dosage , Methylation/drug effects , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Repressor Proteins/genetics , Time Factors , Transcriptome , Valproic Acid/administration & dosage
16.
Chem Res Toxicol ; 27(3): 408-20, 2014 Mar 17.
Article in English | MEDLINE | ID: mdl-24383497

ABSTRACT

Information on design principles governing transcriptome changes upon transition from safe to hazardous drug concentrations or from tolerated to cytotoxic drug levels are important for the application of toxicogenomics data in developmental toxicology. Here, we tested the effect of eight concentrations of valproic acid (VPA; 25-1000 µM) in an assay that recapitulates the development of human embryonic stem cells to neuroectoderm. Cells were exposed to the drug during the entire differentiation process, and the number of differentially regulated genes increased continuously over the concentration range from zero to about 3000. We identified overrepresented transcription factor binding sites (TFBS) as well as superordinate cell biological processes, and we developed a gene ontology (GO) activation profiler, as well as a two-dimensional teratogenicity index. Analysis of the transcriptome data set by the above biostatistical and systems biology approaches yielded the following insights: (i) tolerated (≤25 µM), deregulated/teratogenic (150-550 µM), and cytotoxic (≥800 µM) concentrations could be differentiated. (ii) Biological signatures related to the mode of action of VPA, such as protein acetylation, developmental changes, and cell migration, emerged from the teratogenic concentrations range. (iii) Cytotoxicity was not accompanied by signatures of newly emerging canonical cell death/stress indicators, but by catabolism and decreased expression of cell cycle associated genes. (iv) Most, but not all of the GO groups and TFBS seen at the highest concentrations were already overrepresented at 350-450 µM. (v) The teratogenicity index reflected this behavior, and thus differed strongly from cytotoxicity. Our findings suggest the use of the highest noncytotoxic drug concentration for gene array toxicogenomics studies, as higher concentrations possibly yield wrong information on the mode of action, and lower drug levels result in decreased gene expression changes and thus a reduced power of the study.


Subject(s)
Cell Differentiation/drug effects , Transcriptome/drug effects , Valproic Acid/toxicity , Binding Sites , Cells, Cultured , Cluster Analysis , Down-Regulation/drug effects , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Humans , Neural Plate/cytology , Neural Plate/metabolism , Principal Component Analysis , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation/drug effects , Valproic Acid/chemistry
17.
Arch Toxicol ; 87(1): 123-43, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23179753

ABSTRACT

Developmental neurotoxicity (DNT) and many forms of reproductive toxicity (RT) often manifest themselves in functional deficits that are not necessarily based on cell death, but rather on minor changes relating to cell differentiation or communication. The fields of DNT/RT would greatly benefit from in vitro tests that allow the identification of toxicant-induced changes of the cellular proteostasis, or of its underlying transcriptome network. Therefore, the 'human embryonic stem cell (hESC)-derived novel alternative test systems (ESNATS)' European commission research project established RT tests based on defined differentiation protocols of hESC and their progeny. Valproic acid (VPA) and methylmercury (MeHg) were used as positive control compounds to address the following fundamental questions: (1) Does transcriptome analysis allow discrimination of the two compounds? (2) How does analysis of enriched transcription factor binding sites (TFBS) and of individual probe sets (PS) distinguish between test systems? (3) Can batch effects be controlled? (4) How many DNA microarrays are needed? (5) Is the highest non-cytotoxic concentration optimal and relevant for the study of transcriptome changes? VPA triggered vast transcriptional changes, whereas MeHg altered fewer transcripts. To attenuate batch effects, analysis has been focused on the 500 PS with highest variability. The test systems differed significantly in their responses (<20 % overlap). Moreover, within one test system, little overlap between the PS changed by the two compounds has been observed. However, using TFBS enrichment, a relatively large 'common response' to VPA and MeHg could be distinguished from 'compound-specific' responses. In conclusion, the ESNATS assay battery allows classification of human DNT/RT toxicants on the basis of their transcriptome profiles.


Subject(s)
Embryonic Stem Cells/drug effects , Gene Expression Profiling , Mutagenicity Tests/methods , Neurotoxicity Syndromes/genetics , Binding Sites , Cells, Cultured , Embryonic Stem Cells/cytology , Gene Expression Regulation/drug effects , Humans , Methylmercury Compounds/toxicity , Oligonucleotide Array Sequence Analysis , Valproic Acid/toxicity
18.
Biochim Biophys Acta ; 1824(9): 1045-57, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22633975

ABSTRACT

Ca(v)2.3 containing voltage-activated Ca(2+) channels are expressed in excitable cells and trigger neurotransmitter and peptide-hormone release. Their expression remote from the fast release sites leads to the accumulation of presynaptic Ca(2+) which can both, facilitate and inhibit the influx of Ca(2+) ions through Ca(v)2.3. The facilitated Ca(2+) influx was recently related to hippocampal postsynaptic facilitation and long term potentiation. To analyze Ca(2+) mediated modulation of cellular processes more in detail, protein partners of the carboxy terminal tail of Ca(v)2.3 were identified by yeast-2-hybrid screening, leading in two human cell lines to the detection of a novel, extended and rarely occurring splice variant of calmodulin-2 (CaM-2), called CaM-2-extended (CaM-2-ext). CaM-2-ext interacts biochemically with the C-terminus of Ca(v)2.3 similar to the classical CaM-2 as shown by co-immunoprecipitation. Functionally, only CaM-2-ext reduces whole cell inward currents significantly. The insertion of the novel 46 nts long exon and the consecutive expression of CaM-2-ext must be dependent on a new upstream translation initiation site which is only rarely used in the tested human cell lines. The structure of the N-terminal extension is predicted to be more hydrophobic than the remaining CaM-2-ext protein, suggesting that it may help to dock it to the lipophilic membrane surrounding.


Subject(s)
Alternative Splicing , Calcium Channels, R-Type/metabolism , Calmodulin/metabolism , Cation Transport Proteins/metabolism , Amino Acid Sequence , Base Sequence , Calcium/metabolism , Calcium Channels, R-Type/chemistry , Calcium Channels, R-Type/genetics , Calmodulin/chemistry , Calmodulin/genetics , Cation Transport Proteins/chemistry , Cation Transport Proteins/genetics , Cell Line , HEK293 Cells , Humans , Immunoprecipitation , Molecular Sequence Data
19.
Cell Calcium ; 46(4): 293-302, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19783046

ABSTRACT

We investigated the biophysical mechanism of inhibition of recombinant T-type calcium channels Ca(V)3.1 and Ca(V)3.2 by nitrous oxide (N(2)O). To identify functionally important channel structures, chimeras with reciprocal exchange of the N-terminal domains I and II and C-terminal domains III and IV were examined. In whole-cell recordings N(2)O significantly inhibited Ca(V)3.2, and - less pronounced - Ca(V)3.1. A Ca(V)3.2-prevalent inhibition of peak currents was also detected in cell-attached multi-channel patches. In cell-attached patches containing < or = 3 channels N(2)O reduced average peak current of Ca(V)3.2 by decreasing open probability and open time duration. Effects on Ca(V)3.1 were smaller and mediated by a reduced fraction of sweeps containing channel activity. Without drug, single Ca(V)3.1 channels were significantly less active than Ca(V)3.2. Chimeras revealed that domains III and IV control basal gating properties. Domains I and II, in particular a histidine residue within Ca(V)3.2 (H191), are responsible for the subtype-prevalent N(2)O inhibition. Our study demonstrates the biophysical (open times, open probability) and structural (domains I and II) basis of action of N(2)O on Ca(V)3.2. Such a fingerprint of single channels can help identifying the molecular nature of native channels. This is exemplified by a characterization of single channels expressed in human hMTC cells as functional homologues of recombinant Ca(V)3.1.


Subject(s)
Calcium Channels, T-Type/metabolism , Ion Channel Gating/physiology , Nitrous Oxide/pharmacology , Calcium Channels, T-Type/chemistry , Calcium Channels, T-Type/drug effects , Calcium Channels, T-Type/genetics , Cell Line, Transformed , Electrophysiology/methods , Humans , Ion Channel Gating/genetics , Nitrous Oxide/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/drug effects , Recombinant Fusion Proteins/metabolism
20.
Mol Cell Neurosci ; 39(4): 605-18, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18834942

ABSTRACT

Voltage-gated calcium channels (VGCCs) are key regulators of neuronal excitability and important factors in epileptogenesis and neurodegeneration. Recent findings suggest a novel, important proictogenic and proneuroapoptotic role of the Ca(v)2.3 E/R-type VGCCs in convulsive generalized tonic-clonic and hippocampal seizures. Though Ca(v)2.3 is also expressed in key structures of the thalamocortical circuitry, their functional relevance in non-convulsive absence seizure activity remains unknown. To this end, we investigated absence specific spike-wave discharge (SWD) susceptibility in control and Ca(v)2.3-deficient mice by systemic administration of gamma-hydroxybutyrolactone (GBL, 70 mg/kg i.p.), followed by electrocorticographic radiotelemetric recordings, behavioral analysis and histomorphological characterization. Based on motoric studies, SWD and power-spectrum density (PSD) analysis, our results demonstrate that Ca(v)2.3(-/-) mice exhibit increased absence seizure susceptibility and altered absence seizure architecture compared to control animals. This study provides evidence for the first time that Ca(v)2.3 E/R-type Ca2+ channels are important in modulating thalamocortical hyperoscillation exerting anti-epileptogenic effects in non-convulsive absence seizures.


Subject(s)
Calcium Channels, R-Type/metabolism , Cation Transport Proteins/metabolism , Cerebral Cortex/physiology , Periodicity , Thalamus/physiology , Animals , Behavior, Animal/physiology , Calcium Channels, R-Type/genetics , Cation Transport Proteins/genetics , Electroencephalography , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Lactones/chemistry , Lactones/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Neurons/cytology , Neurons/metabolism , Seizures/metabolism , Seizures/physiopathology , Telemetry
SELECTION OF CITATIONS
SEARCH DETAIL
...