Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 56
1.
Wien Klin Wochenschr ; 136(Suppl 5): 103-123, 2024 Aug.
Article De | MEDLINE | ID: mdl-38743348

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe, chronic multisystemic disease which, depending on its severity, can lead to considerable physical and cognitive impairment, loss of ability to work and the need for nursing care including artificial nutrition and, in very severe cases, even death.The aim of this D-A-CH (Germany, Austria, Switzerland) consensus statement is 1) to summarize the current state of knowledge on ME/CFS, 2) to highlight the Canadian Consensus Criteria (CCC) as clinical criteria for diagnostics with a focus on the leading symptom post-exertional malaise (PEM) and 3) to provide an overview of current options and possible future developments, particularly with regard to diagnostics and therapy. The D-A-CH consensus statement is intended to support physicians, therapists and valuer in diagnosing patients with suspected ME/CFS by means of adequate anamnesis and clinical-physical examinations as well as the recommended clinical CCC, using the questionnaires and other examination methods presented. The overview of the two pillars of therapy for ME/CFS, pacing and symptom-relieving therapy options, is intended not only to provide orientation for physicians and therapists, but also to support decision-makers from healthcare policy and insurance companies in determining which therapy options should already be reimbursable by them at this point in time for the indication ME/CFS.


Fatigue Syndrome, Chronic , Fatigue Syndrome, Chronic/therapy , Fatigue Syndrome, Chronic/diagnosis , Humans , Austria , Germany , Switzerland , Intersectoral Collaboration , Practice Guidelines as Topic , Patient Care Team
2.
Genetics ; 225(2)2023 10 04.
Article En | MEDLINE | ID: mdl-37550847

Rapid phenotypic adaptation is widespread in nature, but the underlying genetic dynamics remain controversial. Whereas population genetics envisages sequential beneficial substitutions, quantitative genetics assumes a collective response through subtle shifts in allele frequencies. This dichotomy of a monogenic and a highly polygenic view of adaptation raises the question of a middle ground, as well as the factors controlling the transition. Here, we consider an additive quantitative trait with equal locus effects under Gaussian stabilizing selection that adapts to a new trait optimum after an environmental change. We present an analytical framework based on Yule branching processes to describe how phenotypic adaptation is achieved by collective changes in allele frequencies at the underlying loci. In particular, we derive an approximation for the joint allele-frequency distribution conditioned on the trait mean as a comprehensive descriptor of the adaptive architecture. Depending on the model parameters, this architecture reproduces the well-known patterns of sequential, monogenic sweeps, or of subtle, polygenic frequency shifts. Between these endpoints, we observe oligogenic architecture types that exhibit characteristic patterns of partial sweeps. We find that a single compound parameter, the population-scaled background mutation rate Θbg, is the most important predictor of the type of adaptation, while selection strength, the number of loci in the genetic basis, and linkage only play a minor role.


Models, Genetic , Selection, Genetic , Gene Frequency , Genetics, Population , Mutation Rate , Adaptation, Physiological/genetics
3.
Genetics ; 223(4)2023 04 06.
Article En | MEDLINE | ID: mdl-36790814

Natural selection not only affects the actual loci under selection but also leaves "footprints" in patterns of genetic variation in linked genetic regions. This offers exciting opportunities for inferring selection and for understanding the processes shaping levels of genetic variation in natural populations. Here, we develop analytical approximations based on coalescent theory to characterize the genetic footprint of a complex, but potentially common type of natural selection: balancing selection with seasonally fluctuating allele frequencies. As we show analytically and confirm with stochastic simulations, seasonal allele frequency fluctuations can have important (and partly unexpected) consequences for the genetic footprint of balancing selection. Fluctuating balancing selection generally leads to an increase in genetic diversity close to the selected site, the effect of balancing selection, but reduces diversity further away from the selected site, which is a consequence of the allele-frequency fluctuations effectively producing recurrent bottlenecks of allelic backgrounds. This medium- and long-range reduction usually outweighs the short-range increase when averaging diversity levels across the entire chromosome. Strong fluctuating balancing selection even induces a loss of genetic variation in unlinked regions, e.g. on different chromosomes. If many loci in the genome are simultaneously under fluctuating balancing selection this can lead to substantial genome-wide reductions in genetic diversity, even when allele-frequency fluctuations are small and local footprints are difficult to detect. Thus, together with genetic drift, selective sweeps and background selection, fluctuating selection could be a major force shaping levels of genetic diversity in natural populations.


Genetic Variation , Selection, Genetic , Gene Frequency , Genetic Drift , Genomics
4.
Nat Commun ; 13(1): 1461, 2022 03 18.
Article En | MEDLINE | ID: mdl-35304466

Understanding how populations adapt to abrupt environmental change is necessary to predict responses to future challenges, but identifying specific adaptive variants, quantifying their responses to selection and reconstructing their detailed histories is challenging in natural populations. Here, we use Arabidopsis from the Cape Verde Islands as a model to investigate the mechanisms of adaptation after a sudden shift to a more arid climate. We find genome-wide evidence of adaptation after a multivariate change in selection pressures. In particular, time to flowering is reduced in parallel across islands, substantially increasing fitness. This change is mediated by convergent de novo loss of function of two core flowering time genes: FRI on one island and FLC on the other. Evolutionary reconstructions reveal a case where expansion of the new populations coincided with the emergence and proliferation of these variants, consistent with models of rapid adaptation and evolutionary rescue.


Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Flowers/genetics , MADS Domain Proteins/genetics , Mutation
5.
Infect Dis Model ; 6: 706-728, 2021.
Article En | MEDLINE | ID: mdl-33824936

A primary quantity of interest in the study of infectious diseases is the average number of new infections that an infected person produces. This so-called reproduction number has significant implications for the disease progression. There has been increasing literature suggesting that superspreading, the significant variability in number of new infections caused by individuals, plays an important role in the spread of SARS-CoV-2. In this paper, we consider the effect that such superspreading has on the estimation of the reproduction number and subsequent estimates of future cases. Accordingly, we employ a simple extension to models currently used in the literature to estimate the reproduction number and present a case-study of the progression of COVID-19 in Austria. Our models demonstrate that the estimation uncertainty of the reproduction number increases with superspreading and that this improves the performance of prediction intervals. Of independent interest is the derivation of a transparent formula that connects the extent of superspreading to the width of credible intervals for the reproduction number. This serves as a valuable heuristic for understanding the uncertainty surrounding diseases with superspreading.

6.
Nat Rev Genet ; 21(12): 782, 2020 Dec.
Article En | MEDLINE | ID: mdl-32764717

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190532, 2020 08 31.
Article En | MEDLINE | ID: mdl-32654650

Gene flow tends to impede the accumulation of genetic divergence. Here, we determine the limits for the evolution of postzygotic reproductive isolation in a model of two populations that are connected by gene flow. We consider two selective mechanisms for the creation and maintenance of a genetic barrier: local adaptation leads to divergence among incipient species due to selection against migrants, and Dobzhansky-Muller incompatibilities (DMIs) reinforce the genetic barrier through selection against hybrids. In particular, we are interested in the maximum strength of the barrier under a limited amount of local adaptation, a challenge that many incipient species may initially face. We first confirm that with classical two-locus DMIs, the maximum amount of local adaptation is indeed a limit to the strength of a genetic barrier. However, with three or more loci and cryptic epistasis, this limit holds no longer. In particular, we identify a minimal configuration of three epistatically interacting mutations that is sufficient to confer strong reproductive isolation. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Adaptation, Biological , Gene Flow , Genetic Speciation , Life History Traits , Reproductive Isolation , Models, Genetic
8.
Nat Rev Genet ; 21(12): 769-781, 2020 12.
Article En | MEDLINE | ID: mdl-32601318

Most adaption processes have a polygenic genetic basis, but even with the recent explosive growth of genomic data we are still lacking a unified framework describing the dynamics of selected alleles. Building on recent theoretical and empirical work we introduce the concept of adaptive architecture, which extends the genetic architecture of an adaptive trait by factors influencing its adaptive potential and population genetic principles. Because adaptation can be typically achieved by many different combinations of adaptive alleles (redundancy), we describe how two characteristics - heterogeneity among loci and non-parallelism between replicated populations - are hallmarks for the characterization of polygenic adaptation in evolving populations. We discuss how this unified framework can be applied to natural and experimental populations.


Adaptation, Biological , Selection, Genetic , Animals , Genome-Wide Association Study , Humans , Models, Biological , Multifactorial Inheritance
9.
PLoS Genet ; 16(6): e1008867, 2020 06.
Article En | MEDLINE | ID: mdl-32555579

Recent research shows that introgression between closely-related species is an important source of adaptive alleles for a wide range of taxa. Typically, detection of adaptive introgression from genomic data relies on comparative analyses that require sequence data from both the recipient and the donor species. However, in many cases, the donor is unknown or the data is not currently available. Here, we introduce a genome-scan method-VolcanoFinder-to detect recent events of adaptive introgression using polymorphism data from the recipient species only. VolcanoFinder detects adaptive introgression sweeps from the pattern of excess intermediate-frequency polymorphism they produce in the flanking region of the genome, a pattern which appears as a volcano-shape in pairwise genetic diversity. Using coalescent theory, we derive analytical predictions for these patterns. Based on these results, we develop a composite-likelihood test to detect signatures of adaptive introgression relative to the genomic background. Simulation results show that VolcanoFinder has high statistical power to detect these signatures, even for older sweeps and for soft sweeps initiated by multiple migrant haplotypes. Finally, we implement VolcanoFinder to detect archaic introgression in European and sub-Saharan African human populations, and uncovered interesting candidates in both populations, such as TSHR in Europeans and TCHH-RPTN in Africans. We discuss their biological implications and provide guidelines for identifying and circumventing artifactual signals during empirical applications of VolcanoFinder.


Genetic Introgression , Genetics, Population/methods , Genome, Human/genetics , Models, Genetic , Polymorphism, Genetic , Africa South of the Sahara , Alleles , Antigens/genetics , Black People/genetics , Computer Simulation , Europe , Evolution, Molecular , Haplotypes , Humans , Intermediate Filament Proteins/genetics , Receptors, Thyrotropin/genetics , S100 Proteins/genetics , Selection, Genetic , Software , White People/genetics
10.
Evolution ; 74(1): 4-14, 2020 01.
Article En | MEDLINE | ID: mdl-31721186

Decades of theoretical work on the evolution of adaptive prezygotic isolation have led to an interesting finding-namely that stable partial reproductive isolation is a relatively common outcome. This conclusion is generally lost, however, in the desire to pinpoint when exactly speciation occurs. Here, we argue that the evolution of partial reproductive isolation is of great interest in its own right and matches empirical findings that ongoing hybridization is taxonomically widespread. We present the mechanisms by which partial reproductive isolation can be a stable evolutionary endpoint, concentrating on insights from theoretical studies. We focus not on cases in which hybridization results from constraints imposed by ongoing migration or mutation, but on the intriguing idea that partial reproductive isolation may instead be an adaptive optimum. We identify three general categories of selective mechanisms that can lead to partial reproductive isolation: context-dependent hybrid advantage, indirect selection due to the varying actions of sexual selection in different geographic contexts, and a balance of costs of choosiness with indirect selection for stronger mating preferences. By any of these mechanisms, stable partial reproductive isolation can potentially provide a robust evolutionary alternative to either complete speciation or population fusion.


Adaptation, Biological , Genetic Speciation , Reproductive Isolation
11.
G3 (Bethesda) ; 9(10): 3395-3407, 2019 10 07.
Article En | MEDLINE | ID: mdl-31462443

In the long-term neutral equilibrium, high rates of migration between subpopulations result in little population differentiation. However, in the short-term, even very abundant migration may not be enough for subpopulations to equilibrate immediately. In this study, we investigate dynamical patterns of short-term population differentiation in adapting populations via stochastic and analytical modeling through time. We characterize a regime in which selection and migration interact to create non-monotonic patterns of population differentiation over time when migration is weaker than selection, but stronger than drift. We demonstrate how these patterns can be leveraged to estimate high migration rates using approximate Bayesian computation. We apply this approach to estimate fast migration in a rapidly adapting intra-host Simian-HIV population sampled from different anatomical locations. We find differences in estimated migration rates between different compartments, even though all are above [Formula: see text] = 1. This work demonstrates how studying demographic processes on the timescale of selective sweeps illuminates processes too fast to leave signatures on neutral timescales.


Biological Evolution , Evolution, Molecular , Genetics, Population , Models, Genetic , Selection, Genetic , Algorithms , Animals , Bayes Theorem , Drug Resistance, Viral , Genetic Variation , Humans , Models, Statistical , Population Dynamics , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/genetics
12.
Evolution ; 73(7): 1341-1355, 2019 07.
Article En | MEDLINE | ID: mdl-31148149

The causes and consequences of fluctuating population densities are an important topic in ecological literature. Yet, the effects of such fluctuations on maintenance of variation in spatially structured populations have received little analytic treatment. We analyze what happens when two habitats coupled by migration not only differ in their trade-offs in selection but also in their demographic stability-and show that equilibrium allele frequencies can change significantly due to ecological feedback arising from locally fluctuating population sizes. When an ecological niche exhibits such fluctuations, these drive an asymmetry in the relative impact of gene flow, and therefore, the equilibrium frequency of the locally adapted type decreases. Our results extend the classic conditions on maintenance of diversity under selection and migration by including the effect of fluctuating population densities. We find simple analytic conditions in terms of the strength of selection, immigration, and the extent of fluctuations between generations in a continent-island model. Although weak fluctuations hardly affect coexistence, strong recurrent fluctuations lead to extinction of the type better adapted to the fluctuating niche-even if the invader is locally maladapted. There is a disadvantage to specialization to an unstable habitat, as it makes the population vulnerable to swamping from more stable habitats.


Biological Evolution , Ecosystem , Gene Flow , Animal Distribution , Models, Biological , Plant Dispersal , Population Density
13.
Elife ; 82019 03 21.
Article En | MEDLINE | ID: mdl-30895925

Great care is needed when interpreting claims about the genetic basis of human variation based on data from genome-wide association studies.


Biological Specimen Banks , Genome-Wide Association Study , Humans , Multifactorial Inheritance , Selection, Genetic , United Kingdom
14.
PLoS Genet ; 15(3): e1008035, 2019 03.
Article En | MEDLINE | ID: mdl-30893299

Evolutionary theory has produced two conflicting paradigms for the adaptation of a polygenic trait. While population genetics views adaptation as a sequence of selective sweeps at single loci underlying the trait, quantitative genetics posits a collective response, where phenotypic adaptation results from subtle allele frequency shifts at many loci. Yet, a synthesis of these views is largely missing and the population genetic factors that favor each scenario are not well understood. Here, we study the architecture of adaptation of a binary polygenic trait (such as resistance) with negative epistasis among the loci of its basis. The genetic structure of this trait allows for a full range of potential architectures of adaptation, ranging from sweeps to small frequency shifts. By combining computer simulations and a newly devised analytical framework based on Yule branching processes, we gain a detailed understanding of the adaptation dynamics for this trait. Our key analytical result is an expression for the joint distribution of mutant alleles at the end of the adaptive phase. This distribution characterizes the polygenic pattern of adaptation at the underlying genotype when phenotypic adaptation has been accomplished. We find that a single compound parameter, the population-scaled background mutation rate Θbg, explains the main differences among these patterns. For a focal locus, Θbg measures the mutation rate at all redundant loci in its genetic background that offer alternative ways for adaptation. For adaptation starting from mutation-selection-drift balance, we observe different patterns in three parameter regions. Adaptation proceeds by sweeps for small Θbg ≲ 0.1, while small polygenic allele frequency shifts require large Θbg ≳ 100. In the large intermediate regime, we observe a heterogeneous pattern of partial sweeps at several interacting loci.


Adaptation, Physiological/genetics , Multifactorial Inheritance/genetics , Selection, Genetic/genetics , Acclimatization/genetics , Alleles , Biological Evolution , Computational Biology/methods , Computer Simulation , Evolution, Molecular , Gene Frequency/genetics , Genetics, Population/methods , Models, Genetic , Mutation , Mutation Rate , Phenotype , Quantitative Trait Loci/genetics
15.
PLoS Genet ; 15(2): e1007936, 2019 02.
Article En | MEDLINE | ID: mdl-30742615

Adaptation in extended populations often occurs through multiple independent mutations responding in parallel to a common selection pressure. As the mutations spread concurrently through the population, they leave behind characteristic patterns of polymorphism near selected loci-so-called soft sweeps-which remain visible after adaptation is complete. These patterns are well-understood in two limits of the spreading dynamics of beneficial mutations: the panmictic case with complete absence of spatial structure, and spreading via short-ranged or diffusive dispersal events, which tessellates space into distinct compact regions each descended from a unique mutation. However, spreading behaviour in most natural populations is not exclusively panmictic or diffusive, but incorporates both short-range and long-range dispersal events. Here, we characterize the spatial patterns of soft sweeps driven by dispersal events whose jump distances are broadly distributed, using lattice-based simulations and scaling arguments. We find that mutant clones adopt a distinctive structure consisting of compact cores surrounded by fragmented "haloes" which mingle with haloes from other clones. As long-range dispersal becomes more prominent, the progression from diffusive to panmictic behaviour is marked by two transitions separating regimes with differing relative sizes of halo to core. We analyze the implications of the core-halo structure for the statistics of soft sweep detection in small genomic samples from the population, and find opposing effects of long-range dispersal on the expected diversity in global samples compared to local samples from geographic subregions of the range. We also discuss consequences of the standing genetic variation induced by the soft sweep on future adaptation and mixing.


Adaptation, Physiological/genetics , Genetics, Population , Models, Genetic , Alleles , Computer Simulation , Genetic Variation , Mutation , Polymorphism, Genetic , Population Dynamics , Selection, Genetic
16.
PLoS One ; 13(7): e0200802, 2018.
Article En | MEDLINE | ID: mdl-30024954

Interspecific hybridization (i.e. mating between species) occurs frequently in animals. Among cyclical parthenogens, hybrids can proliferate and establish through parthenogenetic reproduction, even if their sexual reproduction is impaired. In water fleas of the Daphnia longispina species complex, interspecific hybrids hatch from sexually produced dormant eggs. However, fewer hybrid genotypes contribute to the dormant egg bank and their hatching rate from dormant eggs is reduced, compared to eggs resulting from intraspecific crosses. Therefore, Daphnia hybrids would benefit from adaptations that increase their survival over winter as parthenogenetic lineages, avoiding the need to re-establish populations after winter from sexually produced dormant eggs. Here, we constructed a mathematical model to examine the conditions that could explain the frequently observed establishment of hybrids in the D. longispina species complex. Specifically, we compared the outcome of hybrid and parental taxa competition given a reduced contribution of hybrids to hatchlings from the sexually produced dormant egg bank, but their increased ability to survive winter as parthenogenetic lineages. In addition, different growth rates of parental species and differences in average annual temperatures were evaluated for their influence on hybrid production and establishment. Our model shows that increased overwinter performance as parthenogenetic females can compensate for reduced success in sexual reproduction, across all tested scenarios for varying relative growth rates of parental species. This pattern holds true for lower annual temperatures, but at higher temperatures hybrids were less successful. Consequently, hybrids might become less abundant as temperatures rise due to climate change, resulting in reduced diversity and faster differentiation of the parental species.


Daphnia/genetics , Models, Theoretical , Animals , Genetic Variation/genetics , Genotype , Hybridization, Genetic , Life History Traits , Microsatellite Repeats/genetics
17.
Genetics ; 209(1): 241-254, 2018 05.
Article En | MEDLINE | ID: mdl-29496748

By encompassing the whole continuum between allopatric and sympatric scenarios, parapatric speciation includes many potential scenarios for the evolution of new species. Here, we investigate how a genetic barrier to gene flow, that relies on a single postzygotic genetic incompatibility, may further evolve under ongoing migration. We consider a continent island model with three loci involved in pairwise Dobzhansky-Muller incompatibilities (DMIs). Using an analytic approach, we derive the conditions for invasion of a new mutation and its consequences for the strength and stability of the initial genetic barrier. Our results show that the accumulation of genetic incompatibilities in the presence of gene flow is under strong selective constraints. In particular, preexisting incompatibilities do not always facilitate the invasion of further barrier genes. If new mutations do invade, they will often weaken or destroy the barrier rather than strengthening it. We conclude that migration is highly effective at disrupting the so-called "snowball effect", the accelerated accumulation of DMIs that has been described for allopatric populations en route to reproductive isolation.


Gene Flow , Genetic Speciation , Heterozygote , Models, Genetic , Adaptation, Biological , Algorithms , Haploidy , Haplotypes , Quantitative Trait Loci
18.
Mol Biol Evol ; 35(3): 564-574, 2018 Mar 01.
Article En | MEDLINE | ID: mdl-29216397

The study of model organisms on islands may shed light on rare long-range dispersal events, uncover signatures of local evolutionary processes, and inform demographic inference on the mainland. Here, we sequenced the genomes of Arabidopsis thaliana samples from the oceanic island of Madeira. These samples include the most diverged worldwide, likely a result of long isolation on the island. We infer that colonization of Madeira happened between 70 and 85 ka, consistent with a propagule dispersal model (of size ≥10), or with an ecological window of opportunity. This represents a clear example of a natural long-range dispersal event in A. thaliana. Long-term effective population size on the island, rather than the founder effect, had the greatest impact on levels of diversity, and rates of coalescence. Our results uncover a selective sweep signature on the ancestral haplotype of a known translocation in Eurasia, as well as the possible importance of the low phosphorous availability in volcanic soils, and altitude, in shaping early adaptations to the island conditions. Madeiran genomes, sheltered from the complexities of continental demography, help illuminate ancient demographic events in Eurasia. Our data support a model in which two separate lineages of A. thaliana, one originating in Africa and the other from the Caucasus expanded and met in Iberia, resulting in a secondary contact zone there. Although previous studies inferred that the westward expansion of A. thaliana coincided with the spread of human agriculture, our results suggest that it happened much earlier (20-40 ka).

19.
Evolution ; 71(5): 1366-1380, 2017 05.
Article En | MEDLINE | ID: mdl-28272742

We investigate the conditions for the origin and maintenance of postzygotic isolation barriers, so called (Bateson-)Dobzhansky-Muller incompatibilities or DMIs, among populations that are connected by gene flow. Specifically, we compare the relative stability of pairwise DMIs among autosomes, X chromosomes, and mitochondrial genes. In an analytical approach based on a continent-island framework, we determine how the maximum permissible migration rates depend on the genomic architecture of the DMI, on sex bias in migration rates, and on sex-dependence of allelic and epistatic effects, such as dosage compensation. Our results show that X-linkage of DMIs can enlarge the migration bounds relative to autosomal DMIs or autosome-mitochondrial DMIs, in particular in the presence of dosage compensation. The effect is further strengthened with male-biased migration. This mechanism might contribute to a higher density of DMIs on the X chromosome (large X-effect) that has been observed in several species clades. Furthermore, our results agree with empirical findings of higher introgression rates of autosomal compared to X-linked loci.


Gene Flow , Mitochondria , Models, Genetic , X Chromosome , Animals , Female , Gene Dosage , Genome , Male
20.
Genetics ; 202(2): 721-32, 2016 Feb.
Article En | MEDLINE | ID: mdl-26627842

How likely is it that a population escapes extinction through adaptive evolution? The answer to this question is of great relevance in conservation biology, where we aim at species' rescue and the maintenance of biodiversity, and in agriculture and medicine, where we seek to hamper the emergence of pesticide or drug resistance. By reshuffling the genome, recombination has two antagonistic effects on the probability of evolutionary rescue: it generates and it breaks up favorable gene combinations. Which of the two effects prevails depends on the fitness effects of mutations and on the impact of stochasticity on the allele frequencies. In this article, we analyze a mathematical model for rescue after a sudden environmental change when adaptation is contingent on mutations at two loci. The analysis reveals a complex nonlinear dependence of population survival on recombination. We moreover find that, counterintuitively, a fast eradication of the wild type can promote rescue in the presence of recombination. The model also shows that two-step rescue is not unlikely to happen and can even be more likely than single-step rescue (where adaptation relies on a single mutation), depending on the circumstances.


Evolution, Molecular , Genetics, Population , Models, Genetic , Recombination, Genetic , Algorithms , Environment , Epistasis, Genetic , Gene-Environment Interaction , Genes, Lethal , Genetic Fitness , Genetic Loci , Mutation
...