ABSTRACT
In this work, hybrid structures formed by nanostructured layers, which contain materials, such as porous silicon (PSi), carbon nanotubes (CNTs), graphene oxide (GO), and silicon-rich oxide (SRO), were studied. The PSi layers were obtained by electrochemical etching over which CNTs and GO were deposited by spin coating. In addition, SRO layers, in which silicon nanocrystals are embedded, were obtained by hot filament chemical vapor deposition (HFCVD) technique. Photoluminescence (PL) spectra were obtained from the hybrid structures with which a comparative analysis was completed among different PL ones. The SRO layers were used to confine the CNTs and GO. The main purpose of making these hybrid structures is to modulate their PL response and obtain different emission energy regions in the PL response. It was found that the PL spectra of the CNTs/SRO and GO/SRO structures exhibit a shift towards high energies compared to those obtained from the PSi layers; likewise, the PSi/CNTs/SRO and PSi/GO/SRO structures show a similar behavior. To identify the different emission mechanisms originated by PSi, GO, CNTs, and SRO, the PL spectra were deconvolved. It was found that the Psi/CNTs/SRO and Psi/GO/SRO structures exhibit a PL shift in respect to the PSi layers, for this reason, the modulation of the PL emission of the structures makes these hybrid structures promising candidates to be applied in the field of photonic and electroluminescent devices.
ABSTRACT
MIS-type structures composed of silicon-rich oxide (SRO), thin films deposited by hot filament chemical vapor deposition (HFCVD), show interesting I-V and I-t properties under white light illumination and a response as photodetectors. From electrical measurements, it was found that at a reverse bias of -4 V, the illumination current increased by up to three orders of magnitude relative to the dark current, which was about 82 nA, while the photogenerated current reached a value of 25 µA. The reported MIS structure with SRO as the dielectric layer exhibited a hopping conduction mechanism, and an ohmic conduction mechanism was found with low voltage. I-t measurements confirmed the increased photogenerated current. Furthermore, the MIS structure, characterized by current-wavelength (I-λ) measurements, exhibited a maximum responsivity value at 254 mA/W, specific detectivity (D*) at 2.21 × 1011 cm Hz1/2 W-1, and a noise equivalent power (NEP) of 49 pW at a wavelength of 535 nm. The structure exhibited good switching behavior, with rise and fall times between 120 and 150 ms, respectively. These rise and decay times explain the generation and recombination of charge carriers and the trapping and release of traps, respectively. These results make MIS-type structures useful as photodetectors in the 420 to 590 nm range.
Subject(s)
Gases , Silicon , Hot Temperature , Silicon/chemistry , Silicon DioxideABSTRACT
In the present work, non-stoichiometric silicon oxide films (SiOx) deposited using a hot filament chemical vapor deposition technique at short time and simple parameters of depositions are reported. This is motivated by the numerous potential applications of SiOx films in areas such as optoelectronics. SiOx films were characterized with different spectroscopic techniques. The deposited films have interesting characteristics such as the presence of silicon nanoclusters without applying thermal annealing, in addition to a strong photoluminescence after applying thermal annealing in the vicinity of 1.5 eV, which may be attributed to the presence of small, oxidized silicon grains (less than 2 nm) or silicon nanocrystals (Si-nc). An interesting correlation was found between oxygen content, the presence of hydrogen, and the formation of defects in the material, with parameters such as the band gap and the Urbach energies. This correlation is interesting in the development of band gap engineering for this material for applications in photonic devices.