Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
1.
Article in English | MEDLINE | ID: mdl-39284671

ABSTRACT

In November 2022, teplizumab became the first drug approved to delay the course of any autoimmune disease and to change the course of type 1 diabetes (T1D) since the discovery of insulin. The path to its approval took more than 30 years with both successes and failures along the way that would have normally led to its abandonment in other circumstances. Development of the drug was based on studies in preclinical models and parallels efforts in transplantation. From a series of innovative adaptations in response to issues related to adverse events and immunogenicity, humanized Fc receptors (FcR) nonbinding antibodies were developed with improved clinical outcomes and safety as well as new mechanisms. Importantly, as a result of these developments, teplizumab has been able to achieve efficacy over extended periods of time without global immune suppression. The approval of teplizumab represents a significant first step toward achieving escape from T1D and, in the future, reversal of the disease.

2.
Diabetes ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167668

ABSTRACT

The approval of teplizumab to delay the onset of type 1 diabetes is an important inflection point in the decades long pursuit to treat the cause of the disease rather than its symptoms. NIDDK convened a workshop of the Diabetes Mellitus Interagency Coordinating Committee titled "Evolving Concepts in Pathophysiology, Screening, and Prevention of Type 1 Diabetes" to review this accomplishment and identify future goals. Speakers representing Diabetes TrialNet (TN) and the Immune tolerance Network (ITN) emphasized that the ability to robustly identify individuals destined to develop type 1 diabetes was essential for clinical trials. The presenter from the FDA described that regulatory approval relied upon data from TN's single clinical trial testing teplizumab for delay of clinical diagnosis, along with confirmatory evidence from studies in patients after diagnosis. The workshop reviewed the etiology of type 1 diabetes as a disease involving multiple immune pathways, highlighting the current understanding of prognostic markers, and proposing potential strategies to improve the therapeutic response of disease modifying therapies based on their mechanism of action. While celebrating these achievements funded by the congressionally appropriated Special Diabetes Program, panelists from professional organizations, non-profit advocacy/funding groups, and industry also identified significant hurdles in translating this research into clinical care.

3.
J Clin Invest ; 134(18)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137044

ABSTRACT

BACKGROUNDTeplizumab, a non-FcR-binding anti-CD3 mAb, is approved to delay progression of type 1 diabetes (T1D) in at-risk patients. Previous investigations described the immediate effects of the 14-day treatment, but longer-term effects of the drug remain unknown.METHODSWith an extended analysis of study participants, we found that 36% were undiagnosed or remained free of clinical diabetes after 5 years, suggesting operational tolerance. Using single-cell RNA sequencing, we compared the phenotypes, transcriptome, and repertoire of peripheral blood CD8+ T cells including autoreactive T cells from study participants before and after teplizumab and features of responders and non-responders.RESULTSAt 3 months, there were transcriptional signatures of cell activation in CD4+ and CD8+ T cells including signaling that was reversed at 18 months. At that time, there was reduced expression of genes in T cell receptor and activation pathways in clinical responders. In CD8+ T cells, we found increased expression of genes associated with exhaustion and immune regulation with teplizumab treatment. These transcriptional features were further confirmed in an independent cohort. Pseudotime analysis showed differentiation of CD8+ exhausted and memory cells with teplizumab treatment. IL7R expression was reduced, and patients with lower expression of CD127 had longer diabetes-free intervals. In addition, the frequency of autoantigen-reactive CD8+ T cells, which expanded in the placebo group over 18 months, did not increase in the teplizumab group.CONCLUSIONThese findings indicate that teplizumab promotes operational tolerance in T1D, involving activation followed by exhaustion and regulation, and prevents expansion of autoreactive T cells.TRIAL REGISTRATIONClinicalTrials.gov NCT01030861.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases/NIH, Juvenile Diabetes Research Foundation.


Subject(s)
Antibodies, Monoclonal, Humanized , CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Male , CD8-Positive T-Lymphocytes/immunology , Female , Antibodies, Monoclonal, Humanized/therapeutic use , Adult , Adolescent
4.
Article in English | MEDLINE | ID: mdl-39134388

ABSTRACT

Type 1 diabetes (T1D) is a chronic autoimmune disease with a metabolic outcome. Studies over the past decades, have identified the contributions of genetics, environmental factors, and disorders of innate and adaptive immunity that collectively cause ß-cell killing. The risk for T1D can be genetically identified but genotypes alone do not identify factors that lead to disease progression. The incidence of T1D has been increasing in the past few decades, which may be due to reduced exposure to infections and other environmental factors that can reduce autoimmunity (hygiene hypothesis). Once initiated, the disease pathogenesis progresses through stages that have been defined on the bases of immunologic (i.e., autoantibodies) and metabolic markers (glucose tolerance). The stages only loosely capture the risk for the time to diagnosis of disease, do not directly reflect disease activity, and there may be variance in the rate of progression within stages. In a general way, the stages can be used to identify patients at risk in whom interventions may be considered to modulate progression. This was achieved with the approval of teplizumab, a humanized anti-CD3 monoclonal antibody, for delaying the diagnosis of T1D.

5.
Article in English | MEDLINE | ID: mdl-39038853

ABSTRACT

Immunomodulatory agents targeting immune checkpoints are now the state-of-the-art for the treatment of many cancers, but at the same time have led to autoimmune side effects, including autoimmune diabetes: immune checkpoint inhibitor-induced diabetes (CPI-DM). Emerging research shows the importance of preexisting autoimmune disease risk that has been identified through genetics, and autoantibodies. Key associated clinical findings also include increased levels of lipase before diagnosis suggesting that the inflammatory process in the pancreas extends beyond the islets of Langerhans. There is selectivity for the blockade of programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) for this adverse event, consistent with the role of this checkpoint in maintaining tolerance to autoimmune diabetes.

6.
Sci Transl Med ; 16(746): eadn2404, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38718135

ABSTRACT

CD4+CD25hiCD127lo/-FOXP3+ regulatory T cells (Tregs) play a key role in preventing autoimmunity. In autoimmune type 1 diabetes (T1D), adoptive transfer of autologous polyclonal Tregs has been shown to be safe in adults in phase 1 clinical trials. We explored factors contributing to efficacy of autologous polyclonal expanded Tregs (expTregs) in a randomized phase 2 multi-center, double-blind, clinical trial (Sanford/Lisata Therapeutics T-Rex phase 2 trial, ClinicalTrials.gov NCT02691247). One hundred ten treated children and adolescents with new-onset T1D were randomized 1:1:1 to high-dose (20 × 106 cells/kilogram) or low-dose (1 × 106 cells/kilogram) treatments or to matching placebo. Cytometry as well as bulk and single-cell RNA sequencing were performed on selected expTregs and peripheral blood samples from participants. The single doses of expTregs were safe but did not prevent decline in residual ß cell function over 1 year compared to placebo (P = 0.94 low dose, P = 0.21 high dose), regardless of age or baseline C-peptide. ExpTregs were highly activated and suppressive in vitro. A transient increase of activated memory Tregs was detectable 1 week after infusion in the high-dose cohort, suggesting effective transfer of expTregs. However, the in vitro fold expansion of expTregs varied across participants, even when accounting for age, and lower fold expansion and its associated gene signature were linked with better C-peptide preservation regardless of Treg dose. These results suggest that a single dose of polyclonal expTregs does not alter progression in T1D; instead, Treg quality may be an important factor.


Subject(s)
Diabetes Mellitus, Type 1 , T-Lymphocytes, Regulatory , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , T-Lymphocytes, Regulatory/immunology , Child , Adolescent , Male , Female , Double-Blind Method , Child, Preschool , Transplantation, Autologous
7.
Diabetes Care ; 47(6): 1048-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38621411

ABSTRACT

OBJECTIVE: Mixed-meal tolerance test-stimulated area under the curve (AUC) C-peptide at 12-24 months represents the primary end point for nearly all intervention trials seeking to preserve ß-cell function in recent-onset type 1 diabetes. We hypothesized that participant benefit might be detected earlier and predict outcomes at 12 months posttherapy. Such findings would support shorter trials to establish initial efficacy. RESEARCH DESIGN AND METHODS: We examined data from six Type 1 Diabetes TrialNet immunotherapy randomized controlled trials in a post hoc analysis and included additional stimulated metabolic indices beyond C-peptide AUC. We partitioned the analysis into successful and unsuccessful trials and analyzed the data both in the aggregate as well as individually for each trial. RESULTS: Among trials meeting their primary end point, we identified a treatment effect at 3 and 6 months when using C-peptide AUC (P = 0.030 and P < 0.001, respectively) as a dynamic measure (i.e., change from baseline). Importantly, no such difference was seen in the unsuccessful trials. The use of C-peptide AUC as a 6-month dynamic measure not only detected treatment efficacy but also suggested long-term C-peptide preservation (R2 for 12-month C-peptide AUC adjusted for age and baseline value was 0.80, P < 0.001), and this finding supported the concept of smaller trial sizes down to 54 participants. CONCLUSIONS: Early dynamic measures can identify a treatment effect among successful immune therapies in type 1 diabetes trials with good long-term prediction and practical sample size over a 6-month period. While external validation of these findings is required, strong rationale and data exist in support of shortening early-phase clinical trials.


Subject(s)
C-Peptide , Diabetes Mellitus, Type 1 , Immunotherapy , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Humans , C-Peptide/blood , C-Peptide/metabolism , Immunotherapy/methods , Female , Male , Adolescent , Treatment Outcome , Randomized Controlled Trials as Topic , Child , Adult , Area Under Curve
8.
Transpl Int ; 37: 12320, 2024.
Article in English | MEDLINE | ID: mdl-38357216

ABSTRACT

The instant blood-mediated inflammatory response (IBMIR) causes islet loss and compromises diabetes outcomes after total pancreatectomy with islet autotransplant (TPIAT). We previously reported a possible benefit of etanercept in maintaining insulin secretion 3 months post-TPIAT. Here, we report 2-year diabetes outcomes and peri-operative inflammatory profiles from a randomized trial of etanercept and alpha-1 antitrypsin (A1AT) in TPIAT. We randomized 43 TPIAT recipients to A1AT (90 mg/kg IV x6 doses, n = 13), etanercept (50 mg then 25 mg SQ x 5 doses, n = 14), or standard care (n = 16). Inflammatory cytokines, serum A1AT and unmethylated insulin DNA were drawn multiple times in the perioperative period. Islet function was assessed 2 years after TPIAT with mixed meal tolerance test, intravenous glucose tolerance test and glucose-potentiated arginine induced insulin secretion. Cytokines, especially IL-6, IL-8, IL-10, and MCP-1, were elevated during and after TPIAT. However, only TNFα differed significantly between groups, with highest levels in the etanercept group (p = 0.027). A1AT increased after IAT in all groups (p < 0.001), suggesting endogenous upregulation. Unmethylated insulin DNA ratios (a marker of islet loss) and 2 years islet function testing were similar in the three groups. To conclude, we found no sustained benefit from administering etanercept or A1AT in the perioperative period.


Subject(s)
Diabetes Mellitus , Islets of Langerhans Transplantation , Humans , Etanercept/therapeutic use , Autografts , Transplantation, Autologous , Insulin , Inflammation , Cytokines , DNA , Pancreatectomy , Treatment Outcome
9.
Nat Rev Immunol ; 24(6): 435-451, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38308004

ABSTRACT

Following the seminal discovery of insulin a century ago, treatment of individuals with type 1 diabetes (T1D) has been largely restricted to efforts to monitor and treat metabolic glucose dysregulation. The recent regulatory approval of the first immunotherapy that targets T cells as a means to delay the autoimmune destruction of pancreatic ß-cells highlights the critical role of the immune system in disease pathogenesis and tends to pave the way for other immune-targeted interventions for T1D. Improving the efficacy of such interventions across the natural history of the disease will probably require a more detailed understanding of the immunobiology of T1D, as well as technologies to monitor residual ß-cell mass and function. Here we provide an overview of the immune mechanisms that underpin the pathogenesis of T1D, with a particular emphasis on T cells.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Humans , Insulin-Secreting Cells/immunology , Animals , T-Lymphocytes/immunology , Immunotherapy/methods , Autoimmunity/immunology
10.
Diabetes ; 73(6): 823-833, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38349844

ABSTRACT

Type 1 diabetes is a chronic autoimmune disease in which destruction of pancreatic ß-cells causes life-threatening metabolic dysregulation. Numerous approaches are envisioned for new therapies, but limitations of current clinical outcome measures are significant disincentives to development efforts. C-peptide, a direct byproduct of proinsulin processing, is a quantitative biomarker of ß-cell function that is not cleared by the liver and can be measured in the peripheral blood. Studies of quantitative measures of ß-cell function have established a predictive relationship between stimulated C-peptide as a measure of ß-cell function and clinical benefits. C-peptide levels at diagnosis are often high enough to afford glycemic control benefits associated with protection from end-organ complications of diabetes, and even lower levels offer protection from severe hypoglycemia in type 1 diabetes, as observed in large prospective cohort studies and interventional trials of islet transplantation. These observations support consideration of C-peptide not just as a biomarker of ß-cell function but also as a specific, sensitive, feasible, and clinically meaningful outcome defining ß-cell preservation or restoration for clinical trials of disease-modifying therapies. Regulatory acceptance of C-peptide as a validated surrogate for demonstration of efficacy would greatly facilitate development of disease-modifying therapies for type 1 diabetes.


Subject(s)
Biomarkers , C-Peptide , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Diabetes Mellitus, Type 1/drug therapy , C-Peptide/metabolism , C-Peptide/blood , Humans , Biomarkers/blood , Biomarkers/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Clinical Trials as Topic
11.
J Clin Endocrinol Metab ; 109(8): 2116-2123, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38267821

ABSTRACT

CONTEXT: Metabolic measures are frequently used to predict type 1 diabetes (T1D) and to understand effects of disease-modifying therapies. OBJECTIVE: Compare metabolic endpoints for their ability to detect preventive treatment effects and predict T1D. METHODS: Six-month changes in metabolic endpoints were assessed for (1) detecting treatment effects by comparing placebo and treatment arms from the randomized controlled teplizumab prevention trial, a multicenter clinical trial investigating 14-day intravenous teplizumab infusion and (2) predicting T1D in the TrialNet Pathway to Prevention natural history study. For each metabolic measure, t-Values from t tests for detecting a treatment effect were compared with chi-square values from proportional hazards regression for predicting T1D. Participants in the teplizumab prevention trial and participants in the Pathway to Prevention study selected with the same inclusion criteria used for the teplizumab trial were studied. RESULTS: Six-month changes in glucose-based endpoints predicted diabetes better than C-peptide-based endpoints, yet the latter were better at detecting a teplizumab effect. Combined measures of glucose and C-peptide were more balanced than measures of glucose alone or C-peptide alone for predicting diabetes and detecting a teplizumab effect. CONCLUSION: The capacity of a metabolic endpoint to detect a treatment effect does not necessarily correspond to its accuracy for predicting T1D. However, combined glucose and C-peptide endpoints appear to be effective for both predicting diabetes and detecting a response to immunotherapy. These findings suggest that combined glucose and C-peptide endpoints should be incorporated into the design of future T1D prevention trials.


Subject(s)
Antibodies, Monoclonal, Humanized , Blood Glucose , C-Peptide , Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Male , Female , C-Peptide/blood , Blood Glucose/analysis , Blood Glucose/metabolism , Adult , Treatment Outcome , Middle Aged , Young Adult , Prognosis , Biomarkers/analysis
12.
Diabetologia ; 67(1): 27-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37782353

ABSTRACT

AIMS/HYPOTHESIS: We hypothesised that islet beta cell antigen presentation in the gut along with a tolerising cytokine would lead to antigen-specific tolerance in type 1 diabetes. We evaluated this in a parallel open-label Phase 1b study using oral AG019, food-grade Lactococcus lactis bacteria genetically modified to express human proinsulin and human IL-10, as a monotherapy and in a parallel, randomised, double-blind Phase 2a study using AG019 in combination with teplizumab. METHODS: Adults (18-42 years) and adolescents (12-17 years) with type 1 diabetes diagnosed within 150 days were enrolled, with documented evidence of at least one autoantibody and a stimulated peak C-peptide level >0.2 nmol/l. Participants were allocated to interventions using interactive response technology. We treated 42 people aged 12-42 years with recent-onset type 1 diabetes, 24 with Phase 1b monotherapy (open-label) and 18 with Phase 2a combination therapy. In the Phase 2a study, after treatment of the first two open-label participants, all people involved were blinded to group assignment, except for the Data Safety Monitoring Board members and the unblinded statistician. The primary endpoint was safety and tolerability based on the incidence of treatment-emergent adverse events, collected up to 6 months post treatment initiation. The secondary endpoints were pharmacokinetics, based on AG019 detection in blood and faeces, and pharmacodynamic activity. Metabolic and immune endpoints included stimulated C-peptide levels during a mixed meal tolerance test, HbA1c levels, insulin use, and antigen-specific CD4+ and CD8+ T cell responses using an activation-induced marker assay and pooled tetramers, respectively. RESULTS: Data from 24 Phase 1b participants and 18 Phase 2a participants were analysed. No serious adverse events were reported and none of the participants discontinued AG019 due to treatment-emergent adverse events. No systemic exposure to AG019 bacteria, proinsulin or human IL-10 was demonstrated. In AG019 monotherapy-treated adults, metabolic variables were stabilised up to 6 months (C-peptide, insulin use) or 12 months (HbA1c) post treatment initiation. In participants treated with AG019/teplizumab combination therapy, all measured metabolic variables stabilised or improved up to 12 months and CD8+ T cells with a partially exhausted phenotype were significantly increased at 6 months. Circulating preproinsulin-specific CD4+ and CD8+ T cells were detected before and after treatment, with a reduction in the frequency of preproinsulin-specific CD8+ T cells after treatment with monotherapy or combination therapy. CONCLUSIONS/INTERPRETATION: Oral delivery of AG019 was well tolerated and safe as monotherapy and in combination with teplizumab. AG019 was not shown to interfere with the safety profile of teplizumab and may have additional biological effects, including changes in preproinsulin-specific T cells. These preliminary data support continuing studies with this agent alone and in combination with teplizumab or other systemic immunotherapies in type 1 diabetes. TRIAL REGISTRATION: ClinicalTrials.gov NCT03751007, EudraCT 2017-002871-24 FUNDING: This study was funded by Precigen ActoBio.


Subject(s)
Diabetes Mellitus, Type 1 , Adult , Adolescent , Humans , Interleukin-10 , C-Peptide , CD8-Positive T-Lymphocytes/metabolism , Proinsulin , Double-Blind Method
14.
N Engl J Med ; 389(23): 2151-2161, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37861217

ABSTRACT

BACKGROUND: Teplizumab, a humanized monoclonal antibody to CD3 on T cells, is approved by the Food and Drug Administration to delay the onset of clinical type 1 diabetes (stage 3) in patients 8 years of age or older with preclinical (stage 2) disease. Whether treatment with intravenous teplizumab in patients with newly diagnosed type 1 diabetes can prevent disease progression is unknown. METHODS: In this phase 3, randomized, placebo-controlled trial, we assessed ß-cell preservation, clinical end points, and safety in children and adolescents who were assigned to receive teplizumab or placebo for two 12-day courses. The primary end point was the change from baseline in ß-cell function, as measured by stimulated C-peptide levels at week 78. The key secondary end points were the insulin doses that were required to meet glycemic goals, glycated hemoglobin levels, time in the target glucose range, and clinically important hypoglycemic events. RESULTS: Patients treated with teplizumab (217 patients) had significantly higher stimulated C-peptide levels than patients receiving placebo (111 patients) at week 78 (least-squares mean difference, 0.13 pmol per milliliter; 95% confidence interval [CI], 0.09 to 0.17; P<0.001), and 94.9% (95% CI, 89.5 to 97.6) of patients treated with teplizumab maintained a clinically meaningful peak C-peptide level of 0.2 pmol per milliliter or greater, as compared with 79.2% (95% CI, 67.7 to 87.4) of those receiving placebo. The groups did not differ significantly with regard to the key secondary end points. Adverse events occurred primarily in association with administration of teplizumab or placebo and included headache, gastrointestinal symptoms, rash, lymphopenia, and mild cytokine release syndrome. CONCLUSIONS: Two 12-day courses of teplizumab in children and adolescents with newly diagnosed type 1 diabetes showed benefit with respect to the primary end point of preservation of ß-cell function, but no significant differences between the groups were observed with respect to the secondary end points. (Funded by Provention Bio and Sanofi; PROTECT ClinicalTrials.gov number, NCT03875729.).


Subject(s)
Antibodies, Monoclonal, Humanized , Diabetes Mellitus, Type 1 , Adolescent , Child , Humans , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , C-Peptide/analysis , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Double-Blind Method , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , CD3 Complex/antagonists & inhibitors , CD3 Complex/immunology , Disease Progression , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/immunology , Insulin/administration & dosage , Insulin/therapeutic use
15.
Sci Transl Med ; 15(719): eadh0353, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37878676

ABSTRACT

Immune-targeted therapies have efficacy for treatment of autoinflammatory diseases. For example, treatment with the T cell-specific anti-CD3 antibody teplizumab delayed disease onset in participants at high risk for type 1 diabetes (T1D) in the TrialNet 10 (TN-10) trial. However, heterogeneity in therapeutic responses in TN-10 and other immunotherapy trials identifies gaps in understanding disease progression and treatment responses. The intestinal microbiome is a potential source of biomarkers associated with future T1D diagnosis and responses to immunotherapy. We previously reported that antibody responses to gut commensal bacteria were associated with T1D diagnosis, suggesting that certain antimicrobial immune responses may help predict disease onset. Here, we investigated anticommensal antibody (ACAb) responses against a panel of taxonomically diverse intestinal bacteria species in sera from TN-10 participants before and after teplizumab or placebo treatment. We identified IgG2 responses to three species that were associated with time to T1D diagnosis and with teplizumab treatment responses that delayed disease onset. These antibody responses link human intestinal bacteria with T1D progression, adding predictive value to known T1D risk factors. ACAb analysis provides a new approach to elucidate heterogeneity in responses to immunotherapy and identify individuals who may benefit from teplizumab, recently approved by the U.S. Food and Drug Administration for delaying T1D onset.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Diabetes Mellitus, Type 1/drug therapy , Immunotherapy , T-Lymphocytes , Bacteria , Immunity
16.
Diabetologia ; 66(12): 2283-2291, 2023 12.
Article in English | MEDLINE | ID: mdl-37667106

ABSTRACT

AIMS/HYPOTHESIS: Tractable precision biomarkers to identify immunotherapy responders are lacking in type 1 diabetes. We hypothesised that proinsulin:C-peptide (PI:C) ratios, a readout of beta cell stress, could provide insight into type 1 diabetes progression and responses to immunotherapy. METHODS: In this post hoc analysis, proinsulin and C-peptide levels were determined in baseline serum samples from 63 participants with stage 2 type 1 diabetes in the longitudinal TrialNet Teplizumab Prevention Study (n=41 in the teplizumab arm; n=22 in the placebo arm). In addition, previously tested demographic, C-peptide, glucose and proinsulin data were used for the new data analyses. The ratio of intact (unprocessed) proinsulin to C-peptide was analysed and relationships with progression to stage 3 diabetes were investigated. RESULTS: Elevated baseline PI:C was strongly associated with more rapid progression of diabetes in both the placebo and teplizumab treatment groups, but teplizumab abrogated the impact of high pre-treatment PI:C on type 1 diabetes progression. Differential responses of drug treatment in those with high vs low PI:C ratios were independent of treatment effects of teplizumab on the PI:C ratio or on relevant immune cells. CONCLUSIONS/INTERPRETATION: High pre-treatment PI:C identified individuals with stage 2 type 1 diabetes who were exhibiting rapid progression to stage 3 disease and who displayed benefit from teplizumab treatment. These data suggest that readouts of active disease, such as PI:C ratio, could serve to identify optimal candidates or timing for type 1 diabetes disease-modifying therapies.


Subject(s)
Diabetes Mellitus, Type 1 , Proinsulin , Humans , C-Peptide , Antibodies, Monoclonal, Humanized/therapeutic use , Insulin/metabolism
17.
Diabetes Care ; 46(11): 2035-2043, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37708415

ABSTRACT

OBJECTIVE: Innate immune responses may be involved in the earliest phases of type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: To test whether blocking innate immaune cells modulated progression of the disease, we randomly assigned 273 individuals with stage 1 T1D to treatment with hydroxychloroquine (n = 183; 5 mg/kg per day to a maximum of 400 mg) or placebo (n = 90) and assessed whether hydroxychloroquine treatment delayed or prevented progression to stage 2 T1D (i.e., two or more islet autoantibodies with abnormal glucose tolerance). RESULTS: After a median follow-up of 23.3 months, the trial was stopped prematurely by the data safety monitoring board because of futility. There were no safety concerns in the hydroxychloroquine arm, including in annual ophthalmologic examinations. Preplanned secondary analyses showed a transient decrease in the glucose average area under the curve to oral glucose in the hydroxychloroquine-treated arm at month 6 and reduced titers of anti-GAD and anti-insulin autoantibodies and acquisition of positive autoantibodies in the hydroxychloroquine arm (P = 0.032). CONCLUSIONS: We conclude that hydroxychloroquine does not delay progression to stage 2 T1D in individuals with stage 1 disease. Drug treatment reduces the acquisition of additional autoantibodies and the titers of autoantibodies to GAD and insulin.


Subject(s)
Diabetes Mellitus, Type 1 , Hydroxychloroquine , Humans , Hydroxychloroquine/therapeutic use , Autoantibodies , Insulin , Glucose
18.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37586769

ABSTRACT

Immune checkpoint inhibitors (ICIs) are increasingly being used to manage multiple tumor types. Unfortunately, immune-related adverse events affect up to 60% of recipients, often leading to treatment discontinuation in settings where few alternative cancer therapies may be available. Checkpoint inhibitor induced colitis (ICI-colitis) is a common toxicity for which the underlying mechanisms are poorly defined. To better understand the changing colon-specific and peripheral immune environments over the course of progression and treatment of colitis, we collected blood and colon tissue from a patient with Merkel cell carcinoma who developed colitis on treatment with pembrolizumab. We performed single-cell RNA sequencing and T-cell receptor sequencing on samples collected before, during and after pembrolizumab and after various interventions to mitigate toxicity. We report T-cells populations defined by cytotoxicity, memory, and proliferation markers at various stages of colitis. We show preferential depletion of CD8+ T cells with biologic therapy and nominate both circulating and colon-resident T-cell subsets as potential drivers of inflammation and response to immune suppression. Our findings highlight the need for further exploration of the colon immune environment and rationalize future studies evaluating biologics for ICI-colitis, including in the context of ICI re-challenge.


Subject(s)
Colitis , Skin Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Single-Cell Gene Expression Analysis , Colitis/chemically induced , T-Lymphocyte Subsets
19.
Diabetes Care ; 46(10): 1848-1856, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37607392

ABSTRACT

OBJECTIVE: In November 2022, teplizumab-mzwv became the first drug approved to delay the onset of stage 3 type 1 diabetes in adults and children age ≥8 years with stage 2 type 1 diabetes on the basis of data from the pivotal study TN-10. RESEARCH DESIGN AND METHODS: To provide confirmatory evidence of the effects of teplizumab on preserving endogenous insulin production, an integrated analysis of C-peptide data from 609 patients (n = 375 patients receiving teplizumab and n = 234 control patients) from five clinical trials in stage 3 type 1 diabetes was conducted. RESULTS: The primary outcome of the integrated analysis, change from baseline in stimulated C-peptide, was significantly improved at years 1 (average increase 0.08 nmol/L; P < 0.0001) and 2 (average increase 0.12 nmol/L; P < 0.0001) after one or two courses of teplizumab. An analysis of exogenous insulin use was also conducted, showing overall reductions of 0.08 (P = 0.0001) and 0.10 units/kg/day (P < 0.0001) at years 1 and 2, respectively. An integrated safety analysis of five clinical trials that enrolled 1,018 patients with stage 2 or 3 type 1 diabetes (∼1,500 patient-years of follow-up for teplizumab-treated patients) was conducted. CONCLUSIONS: These data confirm consistency in the preservation of ß-cell function, as measured by C-peptide, across multiple clinical trials. This analysis showed that the most common adverse events included lymphopenia, rash, and headache, a majority of which occurred during and after the first few weeks of teplizumab administration and generally resolved without intervention, consistent with a safety profile characterized by self-limited adverse events after one or two courses of teplizumab treatment.


Subject(s)
Diabetes Mellitus, Type 1 , Adult , Child , Humans , Diabetes Mellitus, Type 1/drug therapy , C-Peptide , Insulin, Regular, Human , Antibodies, Monoclonal, Humanized/therapeutic use , Insulin/therapeutic use
20.
medRxiv ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37502867

ABSTRACT

Teplizumab has been approved for the delay of the onset of type 1 diabetes and may modulate new onset disease. We found that patients who were EBV positive at baseline had a more robust response to drug in two clinical trials and therefore postulated that latent virus has general effects in modifying immune responses. We compared the phenotypes, transcriptomes, and development of peripheral blood cells before and after teplizumab treatment. Higher number of Tregs and partially exhausted CD8 + T cells were found in EBV seropositive individuals at the baseline in the TN10 trial and AbATE trial. Single cell transcriptomics and functional assays identified downregulation of the T cell receptor and other signaling pathways before treatment. Impairments in function of adaptive immune cells were enhanced by teplizumab treatment in EBV seropositive individuals. Our data indicate that EBV can impair signaling pathways generally in immune cells, that broadly redirect cell differentiation.

SELECTION OF CITATIONS
SEARCH DETAIL