Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Geobiology ; 20(4): 465-478, 2022 07.
Article En | MEDLINE | ID: mdl-35584309

Symbioses between metazoans and microbes involved in sulfur cycling are integral to the ability of animals to thrive within deep-sea hydrothermal vent environments; the development of such interactions is regarded as a key adaptation in enabling animals to successfully colonize vents. Microbes often colonize the surfaces of vent animals and, remarkably, these associations can also be observed intricately preserved by pyrite in the fossil record of vent environments, stretching back to the lower Paleozoic (Ordovician-early Silurian). In non-vent environments, sulfur isotopes are often employed to investigate the metabolic strategies of both modern and fossil organisms, as certain metabolic pathways of microbes, notably sulfate reduction, can produce large sulfur isotope fractionations. However, the sulfur isotopes of vent fossils, both ancient and recently mineralized, have seldom been explored, and it is not known if the pyrite-preserved vent organisms might also preserve potential signatures of their metabolisms. Here, we use high-resolution secondary ion mass spectrometry (SIMS) to investigate the sulfur isotopes of pyrites from recently mineralized and Ordovician-early Silurian tubeworm fossils with associated microbial fossils. Our results demonstrate that pyrites containing microbial fossils consistently have significantly more negative δ34 S values compared with nearby non-fossiliferous pyrites, and thus represent the first indication that the presence of microbial sulfur-cycling communities active at the time of pyrite formation influenced the sulfur isotope signatures of pyrite at hydrothermal vents. The observed depletions in δ34 S are generally small in magnitude and are perhaps best explained by sulfur isotope fractionation through a combination of sulfur-cycling processes carried out by vent microbes. These results highlight the potential for using sulfur isotopes to explore biological functional relationships within fossil vent communities, and to enhance understanding of how microbial and animal life has co-evolved to colonize vents throughout geological time.


Hydrothermal Vents , Microbiota , Animals , Fossils , Sulfur/metabolism , Sulfur Isotopes/analysis
2.
Front Microbiol ; 12: 802991, 2021.
Article En | MEDLINE | ID: mdl-35087502

Limonitic layers of the regolith, which are often stockpiled as waste materials at laterite mines, commonly contain significant concentrations of valuable base metals, such as nickel, cobalt, and manganese. There is currently considerable demand for these transition metals, and this is projected to continue to increase (alongside their commodity values) during the next few decades, due in the most part to their use in battery and renewable technologies. Limonite bioprocessing is an emerging technology that often uses acidophilic prokaryotes to catalyse the oxidation of zero-valent sulphur coupled to the reduction of Fe (III) and Mn (IV) minerals, resulting in the release of target metals. Chromium-bearing minerals, such as chromite, where the metal is present as Cr (III), are widespread in laterite deposits. However, there are also reports that the more oxidised and more biotoxic form of this metal [Cr (VI)] may be present in some limonites, formed by the oxidation of Cr (III) by manganese (IV) oxides. Bioleaching experiments carried out in laboratory-scale reactors using limonites from a laterite mine in New Caledonia found that solid densities of ∼10% w/v resulted in complete inhibition of iron reduction by acidophiles, which is a critical reaction in the reductive dissolution process. Further investigations found this to be due to the release of Cr (VI) in the acidic liquors. X-ray absorption near edge structure (XANES) spectroscopy analysis of the limonites used found that between 3.1 and 8.0% of the total chromium in the three limonite samples used in experiments was present in the raw materials as Cr (VI). Microbial inhibition due to Cr (VI) could be eliminated either by adding limonite incrementally or by the addition of ferrous iron, which reduces Cr (VI) to less toxic Cr (III), resulting in rates of extraction of cobalt (the main target metal in the experiments) of >90%.

...