Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
2.
Biomedicines ; 12(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38927534

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative illness with a typical age of onset exceeding 65 years of age. The age dependency of the condition led us to track the appearance of DNA damage in the frontal cortex of individuals who died with a diagnosis of AD. The focus on DNA damage was motivated by evidence that increasing levels of irreparable DNA damage are a major driver of the aging process. The connection between aging and the loss of genomic integrity is compelling because DNA damage has also been identified as a possible cause of cellular senescence. The number of senescent cells has been reported to increase with age, and their senescence-associated secreted products are likely contributing factors to age-related illnesses. We tracked DNA damage with 53BP1 and cellular senescence with p16 immunostaining of human post-mortem brain samples. We found that DNA damage was significantly increased in the BA9 region of the AD cortex compared with the same region in unaffected controls (UCs). In the AD but not UC cases, the density of cells with DNA damage increased with distance from the pia mater up to approximately layer V and then decreased in deeper areas. This pattern of DNA damage was overlaid with the pattern of cellular senescence, which also increased with cortical depth. On a cell-by-cell basis, we found that the intensities of the two markers were tightly linked in the AD but not the UC brain. To test whether DNA damage was a causal factor in the emergence of the senescence program, we used etoposide treatment to damage the DNA of cultured mouse primary neurons. While DNA damage increased after treatment, after 24 h, no change in the expression of senescence-associated markers was observed. Our work suggests that DNA damage and cellular senescence are both increased in the AD brain and increasingly coupled. We propose that in vivo, the relationship between the two age-related processes is more complex than previously thought.

3.
Ageing Res Rev ; 99: 102348, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830549

ABSTRACT

Based on "reducing amyloid plaques in the brain", the U.S. Food and Drug Administration has granted accelerated and full approval for two monoclonal anti-Alzheimer's antibodies, aducanumab and lecanemab, respectively. Approval of a third antibody, donanemab, is pending. Moreover, lecanemab and donanemab are claimed to cause delay in the cognitive decline that characterizes the disease. We believe that these findings are subject to misinterpretation and statistical bias. Donanemab is claimed to cause removal of up to 86 % of cerebral amyloid and 36 % delay in cognitive decline compared to placebo. In reality, these are very small changes on an absolute scale and arguably less than what can be achieved with cholinesterase inhibitor/memantine therapy. Moreover, the "removal" of amyloid, based on the reduced accumulation of amyloid-PET tracer, most likely also reflects therapy-related tissue damage. This would also correlate with the minimal clinical effect, the increased frequency of amyloid-related imaging abnormalities, and the accelerated loss of brain volume in treated compared to placebo patients observed with these antibodies. We recommend halting approvals of anti-AD antibodies until these issues are fully understood to ensure that antibody treatment does not cause more harm than benefit to patients.

4.
J Alzheimers Dis ; 99(3): 877-881, 2024.
Article in English | MEDLINE | ID: mdl-38701151

ABSTRACT

Three recent anti-amyloid-ß antibody trials for Alzheimer's disease reported similar effect sizes, used non-reactive saline as placebo, and showed large numbers of adverse events including imaging anomalies (ARIA) that correlate with cognitive changes. Conversely, all previous antibody trials were less reactive and pronounced ineffective. We argue that these observations point to unblinding bias, inflating apparent efficacy and thus altering the risk-benefit balance. Further, we highlight data demonstrating that beyond reducing amyloid, monoclonal antibodies increase monomeric amyloid-ß42 in cerebrospinal fluid, which may explain potential benefits. We should recalibrate the efficacy of these antibodies and devote more resources into strategies beyond removing amyloid.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Peptide Fragments , Humans , Amyloid beta-Peptides/cerebrospinal fluid , Alzheimer Disease/metabolism , Peptide Fragments/cerebrospinal fluid , Risk Assessment , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/therapeutic use
5.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38187529

ABSTRACT

White matter hyperintensity (WMH) is strongly correlated with age-related dementia and hypertension, but its pathogenesis remains obscure. GWAS identified TRIM47 at 17q25 locus as a top genetic risk factor for WMH formation. TRIM family is a class of E3 ubiquitin ligase with pivotal functions in autophagy, which is critical for brain endothelial cell (ECs) remodeling during hypertension. We hypothesize that TRIM47 regulates autophagy and its loss-of-function disturbs cerebrovasculature. Based on transcriptomics and immunohistochemistry, TRIM47 is found selectively expressed by brain ECs in human and mouse, and its transcription is upregulated by artificially-induced autophagy while downregulated in hypertension-like conditions. Using in silico simulation, immunocytochemistry and super-resolution microscopy, we identified the highly conserved binding site between TRIM47 and the LIR (LC3-interacting region) motif of LC3B. Importantly, pharmacological autophagy induction increased Trim47 expression on mouse ECs (b.End3) culture, while silencing Trim47 significantly increased autophagy with ULK1 phosphorylation induction, transcription and vacuole formation. Together, we confirm that TRIM47 is an endogenous inhibitor of autophagy in brain ECs, and such TRIM47-mediated regulation connects genetic and physiological risk factors for WMH formation but warrants further investigation. SUMMARY STATEMENT: TRIM47, top genetic risk factor for white matter hyperintensity formation, is a negative regulator of autophagy in brain endothelial cells and implicates a novel cellular mechanism for age-related cerebrovascular changes.

6.
Ageing Res Rev ; 93: 102173, 2024 01.
Article in English | MEDLINE | ID: mdl-38104639

ABSTRACT

The recently announced revision of the Alzheimer's disease (AD) diagnostic ATN classification adds to an already existing disregard for clinical assessment the rejection of image-based in vivo assessment of the brain's condition. The revision suggests that the diagnosis of AD should be based solely on the presence of cerebral amyloid-beta and tau, indicated by the "A" and "T". The "N", which stands for neurodegeneration - detected by imaging - should no longer be given importance, except that A+ ± T + = AD with amyloid PET being the main method for demonstrating A+ . We believe this is an artificial and misleading suggestion. It is artificial because it relies on biomarkers whose significance remains obscure and where the detection of "A" is based on a never-validated PET method using a tracer that marks much more than amyloid-beta. It is misleading because many patients without dementia will be falsely classified as having AD, but nonetheless candidates for passive immunotherapy, which may be more harmful than beneficial, and sometimes fatal.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , tau Proteins , Amyloid beta-Peptides , Amyloid , Biomarkers , Positron-Emission Tomography
7.
bioRxiv ; 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37546935

ABSTRACT

Myelin degradation is a normal feature of brain aging that accelerates in Alzheimer's disease (AD). To date, however, the underlying biological basis of this correlation remains elusive. The amyloid cascade hypothesis predicts that demyelination is caused by increased levels of the ß-amyloid (Aß) peptide. Here we report on work supporting the alternative hypothesis that early demyelination is upstream of amyloid. We challenged two different mouse models of AD (R1.40 and APP/PS1) using cuprizone-induced demyelination and tracked the responses with both neuroimaging and neuropathology. In oppose to amyloid cascade hypothesis, R1.40 mice, carrying only a single human mutant APP (Swedish; APP SWE ) transgene, showed a more abnormal changes of magnetization transfer ratio and diffusivity than in APP/PS1 mice, which carry both APP SWE and a second PSEN1 transgene (delta exon 9; PSEN1 dE9 ). Although cuprizone targets oligodendrocytes (OL), magnetic resonance spectroscopy and targeted RNA-seq data in R1.40 mice suggested a possible metabolic alternation in axons. In support of alternative hypotheses, cuprizone induced significant intraneuronal amyloid deposition in young APP/PS1, but not in R1.40 mice, and it suggested the presence of PSEN deficiencies, may accelerate Aß deposition upon demyelination. In APP/PS1, mature OL is highly vulnerable to cuprizone with significant DNA double strand breaks (53BP1 + ) formation. Despite these major changes in myelin, OLs, and Aß immunoreactivity, no cognitive impairment or hippocampal pathology was detected in APP/PS1 mice after cuprizone treatment. Together, our data supports the hypothesis that myelin loss can be the cause, but not the consequence, of AD pathology. SIGNIFICANCE STATEMENT: The causal relationship between early myelin loss and the progression of Alzheimer's disease remains unclear. Using two different AD mouse models, R1.40 and APP/PS1, our study supports the hypothesis that myelin abnormalities are upstream of amyloid production and deposition. We find that acute demyelination initiates intraneuronal amyloid deposition in the frontal cortex. Further, the loss of oligodendrocytes, coupled with the accelerated intraneuronal amyloid deposition, interferes with myelin tract diffusivity at a stage before any hippocampus pathology or cognitive impairments occur. We propose that myelin loss could be the cause, not the consequence, of amyloid pathology during the early stages of Alzheimer's disease.

8.
J Alzheimers Dis ; 94(2): 497-507, 2023.
Article in English | MEDLINE | ID: mdl-37334596

ABSTRACT

After the CLARITY-AD clinical trial results of lecanemab were interpreted as positive, and supporting the amyloid hypothesis, the drug received accelerated Food and Drug Administration approval. However, we argue that benefits of lecanemab treatment are uncertain and may yield net harm for some patients, and that the data do not support the amyloid hypothesis. We note potential biases from inclusion, unblinding, dropouts, and other issues. Given substantial adverse effects and subgroup heterogeneity, we conclude that lecanemab's efficacy is not clinically meaningful, consistent with numerous analyses suggesting that amyloid-ß and its derivatives are not the main causative agents of Alzheimer's disease dementia.


Subject(s)
Alzheimer Disease , Amyloidogenic Proteins , United States , Humans , Amyloid beta-Peptides , Antibodies, Monoclonal/therapeutic use
9.
Nat Cell Biol ; 25(3): 493-507, 2023 03.
Article in English | MEDLINE | ID: mdl-36849558

ABSTRACT

How abnormal neurodevelopment relates to the tumour aggressiveness of medulloblastoma (MB), the most common type of embryonal tumour, remains elusive. Here we uncover a neurodevelopmental epigenomic programme that is hijacked to induce MB metastatic dissemination. Unsupervised analyses of integrated publicly available datasets with our newly generated data reveal that SMARCD3 (also known as BAF60C) regulates Disabled 1 (DAB1)-mediated Reelin signalling in Purkinje cell migration and MB metastasis by orchestrating cis-regulatory elements at the DAB1 locus. We further identify that a core set of transcription factors, enhancer of zeste homologue 2 (EZH2) and nuclear factor I X (NFIX), coordinates with the cis-regulatory elements at the SMARCD3 locus to form a chromatin hub to control SMARCD3 expression in the developing cerebellum and in metastatic MB. Increased SMARCD3 expression activates Reelin-DAB1-mediated Src kinase signalling, which results in a MB response to Src inhibition. These data deepen our understanding of how neurodevelopmental programming influences disease progression and provide a potential therapeutic option for patients with MB.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Medulloblastoma/genetics , Phosphorylation , Epigenomics , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cell Adhesion Molecules, Neuronal/pharmacology , Cerebellar Neoplasms/genetics , Epigenesis, Genetic , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism
10.
Handb Clin Neurol ; 192: 143-154, 2023.
Article in English | MEDLINE | ID: mdl-36796939

ABSTRACT

A biomedical hypothesis is a theoretical assumption amenable to being tested in a randomized clinical trial. The main hypotheses in neurodegenerative disorders are based on the concept that proteins accumulate in an aggregated fashion and trigger toxicity. The toxic proteinopathy hypothesis posits that neurodegeneration is caused by toxicity of aggregated amyloid in Alzheimer's disease (toxic amyloid hypothesis), aggregated α-synuclein in Parkinson's disease (toxic synuclein hypothesis), and aggregated tau in progressive supranuclear palsy (toxic tau hypothesis). To date, we have accumulated 40 negative anti-amyloid randomized clinical, 2 anti-synuclein trials, and 4 anti-tau trials. These results have not prompted a major reconsideration of the toxic proteinopathy hypothesis of causality. Imperfections in trial design and execution (incorrect dosage, insensitive endpoints, too-advanced population) but not in the underlying hypotheses have prevailed as explaining the failures. We review here the evidence suggesting that the threshold of hypothesis falsifiability may be too high and advocate in favor of a minimal set of rules that facilitate the interpretation of negative clinical trials as falsifying the driving hypotheses, in particular if the desirable change in surrogate endpoints has been achieved. We propose four steps to refute a hypothesis in future-negative surrogate-backed trials and argue that for the actual rejection to take place, refutation must be accompanied by the proposal of an alternative hypothesis. The absence of alternative hypotheses may be the single greatest reason why there remains hesitancy in rejecting the toxic proteinopathy hypothesis: in the absence of alternatives, we have no clear guidance as to where to redirect or focus.


Subject(s)
Alzheimer Disease , Parkinson Disease , Proteostasis Deficiencies , Humans , tau Proteins/metabolism , Alzheimer Disease/metabolism , Parkinson Disease/metabolism
11.
J Neurosci ; 43(10): 1830-1844, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36717226

ABSTRACT

The amyloid precursor protein (APP) is linked to the genetics and pathogenesis of Alzheimer's disease (AD). It is the parent protein of the ß-amyloid (Aß) peptide, the main constituent of the amyloid plaques found in an AD brain. The pathways from APP to Aß are intensively studied, yet the normal functions of APP itself have generated less interest. We report here that glutamate stimulation of neuronal activity leads to a rapid increase in App gene expression. In mouse and human neurons, elevated APP protein changes the structure of the axon initial segment (AIS) where action potentials are initiated. The AIS is shortened in length and shifts away from the cell body. The GCaMP8f Ca2+ reporter confirms the predicted decrease in neuronal activity. NMDA antagonists or knockdown of App block the glutamate effects. The actions of APP on the AIS are cell-autonomous; exogenous Aß, either fibrillar or oligomeric, has no effect. In culture, APPSwe (a familial AD mutation) induces larger AIS changes than wild type APP. Ankyrin G and ßIV-spectrin, scaffolding proteins of the AIS, both physically associate with APP, more so in AD brains. Finally, in humans with sporadic AD or in the R1.40 AD mouse model, both females and males, neurons have elevated levels of APP protein that invade the AIS. In vivo as in vitro, this increased APP is associated with a significant shortening of the AIS. The findings outline a new role for the APP and encourage a reconsideration of its relationship to AD.SIGNIFICANCE STATEMENT While the amyloid precursor protein (APP) has long been associated with Alzheimer's disease (AD), the normal functions of the full-length Type I membrane protein have been largely unexplored. We report here that the levels of APP protein increase with neuronal activity. In vivo and in vitro, modest amounts of excess APP alter the properties of the axon initial segment. The ß-amyloid peptide derived from APP is without effect. Consistent with the observed changes in the axon initial segment which would be expected to decrease action potential firing, we show that APP expression depresses neuronal activity. In mouse AD models and human sporadic AD, APP physically associates with the scaffolding proteins of the axon initial segment, suggesting a relationship with AD dementia.


Subject(s)
Alzheimer Disease , Axon Initial Segment , Male , Female , Mice , Humans , Animals , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Alzheimer Disease/metabolism , Axon Initial Segment/metabolism , Amyloid beta-Peptides/metabolism , Membrane Proteins , Mice, Transgenic , Disease Models, Animal
12.
J Neurochem ; 165(1): 55-75, 2023 04.
Article in English | MEDLINE | ID: mdl-36549843

ABSTRACT

Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Mice , Humans , Animals , Apolipoprotein E4/genetics , Astrocytes/metabolism , Apolipoproteins E/metabolism , Alzheimer Disease/metabolism , Myelin Sheath/metabolism , Cholesterol/metabolism , Cell Differentiation , Apolipoprotein E3/metabolism , Apolipoprotein E2/genetics , Apolipoprotein E2/metabolism
13.
Ageing Res Rev ; 92: 102112, 2023 12.
Article in English | MEDLINE | ID: mdl-38270185

ABSTRACT

The dominant protein-lowering strategy in Alzheimer's Disease (AD) has failed to provide a clinically-meaningful treatment for patients. We hypothesize that the loss of functional, soluble Aß42 during the process of aggregation into amyloid is more detrimental to the brain than the corresponding accrual of insoluble amyloid.


Subject(s)
Alzheimer Disease , Humans , Amyloidogenic Proteins , Brain
14.
AJOB Neurosci ; : 1-2, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36197130

ABSTRACT

Given the past two decades of over 40 failed trials of amyloid-lowering therapies in Alzheimer's Disease (AD), many of which succeeded in lowering amyloid as designed, we present an ethical argument for emptying the drug pipeline of tests of amyloid-lowering agents so as to end the historical dominance of the amyloid-reducing therapeutic approach in AD.

15.
J Neuropathol Exp Neurol ; 81(9): 717-730, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35779013

ABSTRACT

White matter degradation in the frontal lobe is one of the earliest detectable changes in aging and Alzheimer disease. The ε4 allele of apolipoprotein E (APOE4) is strongly associated with such myelin pathology but the underlying cellular mechanisms remain obscure. We hypothesized that, as a lipid transporter, APOE4 directly triggers pathology in the cholesterol-rich myelin sheath independent of AD pathology. To test this, we performed immunohistochemistry on brain tissues from healthy controls, sporadic, and familial Alzheimer disease subjects. While myelin basic protein expression was largely unchanged, in frontal cortex the number of oligodendrocytes (OLs) was significantly reduced in APOE4 brains independent of their Braak stage or NIA-RI criteria. This high vulnerability of OLs was confirmed in humanized APOE3 or APOE4 transgenic mice. A gradual decline of OL numbers was found in the aging brain without associated neuronal loss. Importantly, the application of lipidated human APOE4, but not APOE3, proteins significantly reduced the formation of myelinating OL in primary cell culture derived from Apoe-knockout mice, especially in cholesterol-depleted conditions. Our findings suggest that the disruption of myelination in APOE4 carriers may represent a direct OL pathology, rather than an indirect consequence of amyloid plaque formation or neuronal loss.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Myelin Sheath , Oligodendroglia , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Apolipoprotein E3 , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoproteins E , Humans , Mice , Mice, Transgenic , Myelin Sheath/pathology
17.
J Bioinform Comput Biol ; 20(2): 2250001, 2022 04.
Article in English | MEDLINE | ID: mdl-34991436

ABSTRACT

Gene expression studies using xenograft transplants or co-culture systems, usually with mixed human and mouse cells, have proven to be valuable to uncover cellular dynamics during development or in disease models. However, the mRNA sequence similarities among species presents a challenge for accurate transcript quantification. To identify optimal strategies for analyzing mixed-species RNA sequencing data, we evaluate both alignment-dependent and alignment-independent methods. Alignment of reads to a pooled reference index is effective, particularly if optimal alignments are used to classify sequencing reads by species, which are re-aligned with individual genomes, generating [Formula: see text] accuracy across a range of species ratios. Alignment-independent methods, such as convolutional neural networks, which extract the conserved patterns of sequences from two species, classify RNA sequencing reads with over 85% accuracy. Importantly, both methods perform well with different ratios of human and mouse reads. While non-alignment strategies successfully partitioned reads by species, a more traditional approach of mixed-genome alignment followed by optimized separation of reads proved to be the more successful with lower error rates.


Subject(s)
High-Throughput Nucleotide Sequencing , RNA , Animals , Base Sequence , High-Throughput Nucleotide Sequencing/methods , Humans , Mice , Sequence Alignment , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods
18.
J Neurosci ; 41(45): 9286-9307, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34593604

ABSTRACT

Adult-onset neurodegenerative diseases are often accompanied by evidence of a chronic inflammation that includes activation of microglial cells and altered levels of brain cytokines. Aspects of this response are likely secondary reactions to neurodegeneration, but for many illnesses the inflammation may itself be an early and even causative disease event. In such cases, the inflammation is referred to as "sterile" as it occurs in the absence of an actual bacterial or viral pathogen. A potent trigger of sterile inflammation in CNS microglia has been shown to be the presence of DNA in the cytoplasm (cytoDNA) induced either by direct DNA damage or by inhibited DNA repair. We have shown that cytoDNA comes from the cell nucleus as a result of insufficient DNA damage repair. Using wild-type and Atm-/- mouse microglia, we extend these observations here by showing that its genomic origins are not random, but rather are heavily biased toward transcriptionally inactive, intergenic regions, in particular repetitive elements and AT-rich sequences. Once released from the genome, in both males and females, we show that cytoDNA is actively exported to the cytoplasm by a CRM1-dependent mechanism. In the cytoplasm, it is degraded either by a cytosolic exonuclease, Trex1, or an autophagy pathway that ends with degradation in the lysosome. Blocking the accumulation of cytoDNA prevents the emergence of the sterile inflammation reaction. These findings offer new insights into the emergence of sterile inflammation and offer novel approaches that may be of use in combatting a wide range of neurodegenerative conditions.SIGNIFICANCE STATEMENT Sterile inflammation describes a state where the defenses of the immune system are activated in the absence of a true pathogen. A potent trigger of this unorthodox response is the presence of DNA in the cytoplasm, which immune cells interpret as an invading virus or pathogen. We show that when DNA damage increases, fragments of the cell's own genome are actively exported to the cytoplasm where they are normally degraded. If this degradation is incomplete an immune reaction is triggered. Both age and stress increase DNA damage, and as age-related neurodegenerative diseases are frequently accompanied by a chronic low-level inflammation, strategies that reduce the induction of cytoplasmic DNA or speed its clearance become attractive therapeutic targets.


Subject(s)
Cytoplasm/immunology , DNA Damage/immunology , DNA/immunology , Inflammation/immunology , Repetitive Sequences, Nucleic Acid/immunology , Animals , Cytoplasm/metabolism , DNA/metabolism , DNA Repair , Female , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/metabolism
19.
Front Cell Dev Biol ; 9: 685261, 2021.
Article in English | MEDLINE | ID: mdl-34222254

ABSTRACT

White matter damage caused by cerebral hypoperfusion is a major hallmark of subcortical ischemic vascular dementia (SIVD), which is the most common subtype of vascular cognitive impairment and dementia (VCID) syndrome. In an aging society, the number of SIVD patients is expected to increase; however, effective therapies have yet to be developed. To understand the pathological mechanisms, we analyzed the profiles of the cells of the corpus callosum after cerebral hypoperfusion in a preclinical SIVD model. We prepared cerebral hypoperfused mice by subjecting 2-month old male C57BL/6J mice to bilateral carotid artery stenosis (BCAS) operation. BCAS-hypoperfusion mice exhibited cognitive deficits at 4 weeks after cerebral hypoperfusion, assessed by novel object recognition test. RNA samples from the corpus callosum region of sham- or BCAS-operated mice were then processed using RNA sequencing. A gene set enrichment analysis using differentially expressed genes between sham and BCAS-operated mice showed activation of oligodendrogenesis pathways along with angiogenic responses. This database of transcriptomic profiles of BCAS-hypoperfusion mice will be useful for future studies to find a therapeutic target for SIVD.

20.
Eur J Neurosci ; 54(4): 5310-5326, 2021 08.
Article in English | MEDLINE | ID: mdl-34309092

ABSTRACT

The glutamatergic cycle is essential in modulating memory processing by the hippocampal circuitry. Our combined proton magnetic resonance spectroscopy (1 H-MRS) and task-based functional magnetic resonance imaging (fMRI) study (using face-name paired-associates encoding and retrieval task) of a cognitively normal cohort of 67 healthy adults (18 ApoE4 carriers and 49 non-ApoE4 carriers) found altered patterns of relationships between glutamatergic-modulated synaptic signalling and neuronal activity or functional hyperaemia in the ApoE4 isoforms. Our study highlighted the asymmetric left-right hippocampal glutamatergic system in modulating neuronal activities in ApoE4 carriers versus non-carriers. Such brain differentiation might be developmental cognitive advantages or compensatory due to impaired synaptic integrity and plasticity in ApoE4 carriers. As there was no difference in myoinositol levels measured by MRS between the ApoE4 and non-ApoE4 subgroups, the mechanism is unlikely to be a response to neuroinflammation.


Subject(s)
Alzheimer Disease , Hippocampus , Adult , Apolipoprotein E4/genetics , Brain , Cognition , Humans , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...