Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Blood Adv ; 7(18): 5651-5660, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37042966

ABSTRACT

Factor XII (FXII) knockdown attenuates catheter thrombosis in rabbits. Because histidine-rich glycoprotein (HRG) modulates FXIIa activity, we hypothesized that HRG depletion would promote catheter thrombosis. To test this, rabbits were given either antisense oligonucleotides (ASOs) against HRG or FXII, a control ASO, or saline. The activated partial thromboplastin time (aPTT), prothrombin time (PT), and catheter-induced thrombin generation were determined in blood collected before and after treatment. Compared with the controls, the HRG- and FXII-directed ASOs reduced hepatic messenger RNA and plasma levels of HRG and FXII, respectively, by >90%. Although HRG knockdown shortened the aPTT by 2.5 fold, FXII knockdown prolonged it by fourfold; neither of the ASOs affected the PT. Catheter segments shortened the lag time and increased peak thrombin in the plasma from control rabbits; effects were significantly enhanced and attenuated in the plasma from rabbits given the HRG- and FXII-directed ASOs, respectively. Catheters were then inserted into the right external jugular vein of the rabbits, and the time for catheter occlusion was determined. The catheter occlusion times with the control ASO or saline were 62 ± 8 minutes and 60 ± 11 minutes, respectively. The occlusion time was significantly reduced to 34 ± 9 minutes, with HRG knockdown and significantly prolonged to 128 ± 19 minutes with FXII knockdown. HRG levels are decreased with sepsis or cancer, and such patients are prone to catheter thrombosis. Because HRG modulates catheter thrombosis, our findings suggest that HRG supplementation may prevent this problem.


Subject(s)
Blood Coagulation , Thrombosis , Animals , Rabbits , Catheters/adverse effects , Factor XII/genetics , Thrombin , Thrombosis/etiology , Thrombosis/prevention & control
2.
Cancer Immunol Res ; 11(4): 486-500, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36700864

ABSTRACT

Diverse factors contribute to the limited clinical response to radiotherapy (RT) and immunotherapy in metastatic non-small cell lung cancer (NSCLC), among which is the ability of these tumors to recruit a retinue of suppressive immune cells-such as M2 tumor-associated macrophages (TAM)-thereby establishing an immunosuppressive tumor microenvironment that contributes to tumor progression and radio resistance. M2 TAMs are activated by the STAT6 signaling pathway. Therefore, we targeted STAT6 using an antisense oligonucleotide (ASO) along with hypofractionated RT (hRT; 3 fractions of 12 Gy each) to primary tumors in three bilateral murine NSCLC models (Lewis lung carcinoma, 344SQ-parental, and anti-PD-1-resistant 344SQ lung adenocarcinomas). We found that STAT6 ASO plus hRT slowed growth of both primary and abscopal tumors, decreased lung metastases, and extended survival. Interrogating the mechanism of action showed reduced M2 macrophage tumor infiltration, enhanced TH1 polarization, improved T-cell and macrophage function, and decreased TGFß levels. The addition of anti-PD-1 further enhanced systemic antitumor responses. These results provide a preclinical rationale for the pursuit of an alternative therapeutic approach for patients with immune-resistant NSCLC.


Subject(s)
Carcinoma, Lewis Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Mice , Animals , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/radiotherapy , Lung Neoplasms/drug therapy , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/metabolism , Macrophages , Carcinoma, Lewis Lung/pathology , Tumor Microenvironment , STAT6 Transcription Factor/metabolism
3.
J Immunother Cancer ; 10(4)2022 04.
Article in English | MEDLINE | ID: mdl-35387780

ABSTRACT

BACKGROUND: The Regulatory T cell (Treg) lineage is defined by the transcription factor FOXP3, which controls immune-suppressive gene expression profiles. Tregs are often recruited in high frequencies to the tumor microenvironment where they can suppress antitumor immunity. We hypothesized that pharmacological inhibition of FOXP3 by systemically delivered, unformulated constrained ethyl-modified antisense oligonucleotides could modulate the activity of Tregs and augment antitumor immunity providing therapeutic benefit in cancer models and potentially in man. METHODS: We have identified murine Foxp3 antisense oligonucleotides (ASOs) and clinical candidate human FOXP3 ASO AZD8701. Pharmacology and biological effects of FOXP3 inhibitors on Treg function and antitumor immunity were tested in cultured Tregs and mouse syngeneic tumor models. Experiments were controlled by vehicle and non-targeting control ASO groups as well as by use of multiple independent FOXP3 ASOs. Statistical significance of biological effects was evaluated by one or two-way analysis of variance with multiple comparisons. RESULTS: AZD8701 demonstrated a dose-dependent knockdown of FOXP3 in primary Tregs, reduction of suppressive function and efficient target downregulation in humanized mice at clinically relevant doses. Surrogate murine FOXP3 ASO, which efficiently downregulated Foxp3 messenger RNA and protein levels in primary Tregs, reduced Treg suppressive function in immune suppression assays in vitro. FOXP3 ASO promoted more than 70% reduction in FOXP3 levels in Tregs in vitro and in vivo, strongly modulated Treg effector molecules (eg, ICOS, CTLA-4, CD25 and 4-1BB), and augmented CD8+ T cell activation and produced antitumor activity in syngeneic tumor models. The combination of FOXP3 ASOs with immune checkpoint blockade further enhanced antitumor efficacy. CONCLUSIONS: Antisense inhibitors of FOXP3 offer a promising novel cancer immunotherapy approach. AZD8701 is being developed clinically as a first-in-class FOXP3 inhibitor for the treatment of cancer currently in Ph1a/b clinical trial (NCT04504669).


Subject(s)
Neoplasms , Oligonucleotides, Antisense , Animals , Disease Models, Animal , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Immunosuppression Therapy , Immunotherapy , Mice , Neoplasms/drug therapy , Neoplasms/genetics , T-Lymphocytes, Regulatory , Tumor Microenvironment
4.
Nucleic Acids Res ; 45(21): 12388-12400, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29069408

ABSTRACT

Antisense oligonucleotide (ASO) therapeutics show tremendous promise for the treatment of previously intractable human diseases but to exert their effects on cellular RNA processing they must first cross the plasma membrane by endocytosis. The conjugation of ASOs to a receptor ligand can dramatically increase their entry into certain cells and tissues, as demonstrated by the implementation of N-acetylgalactosamine (GalNAc)-conjugated ASOs for Asialoglycoprotein Receptor (ASGR)-mediated uptake into liver hepatocytes. We compared the internalization and activity of GalNAc-conjugated ASOs and their parents in endogenous ASGR-expressing cells and were able to recapitulate hepatocyte ASO uptake and activity in cells engineered to heterologously express the receptor. We found that the minor receptor subunit, ASGR2, is not required for effective in vitro or in vivo uptake of GalNAc-conjugated ASO and that the major subunit, ASGR1, plays a small but significant role in the uptake of unconjugated phosphorothioate ASOs into hepatocytes. Moreover, our data demonstrates there is a large excess capacity of liver ASGR for the effective uptake of GalNAc-ASO conjugates, suggesting broad opportunities to exploit receptors with relatively moderate levels of expression.


Subject(s)
Acetylgalactosamine , Asialoglycoprotein Receptor/metabolism , Hepatocytes/metabolism , Oligonucleotides, Antisense/metabolism , Phosphorothioate Oligonucleotides/metabolism , Animals , Biological Transport , Cell Line , Cell Line, Tumor , Cells, Cultured , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Oligonucleotides, Antisense/chemistry , Phosphorothioate Oligonucleotides/chemistry
5.
Mol Vis ; 23: 561-571, 2017.
Article in English | MEDLINE | ID: mdl-28855795

ABSTRACT

PURPOSE: Age-related macular degeneration (AMD) is the leading cause of permanent vision loss among the elderly in many industrialized countries, and the complement system plays an important role in the pathogenesis of AMD. Inhibition of complement factor B, a key regulator of the alternative pathway, is implicated as a potential therapeutic intervention for AMD. Here we investigated the effect of liver factor B reduction on systemic and ocular factor B levels. METHODS: Second-generation antisense oligonucleotides (ASOs) targeting mouse and monkey factor B mRNA were administered by subcutaneous injection to healthy mice or monkeys, and the level of factor B mRNA was assessed in the liver and the eye. In addition, the factor B protein level was determined in plasma and whole eyes from the treated animals. RESULTS: Mice and monkeys treated with factor B ASOs demonstrated a robust reduction in liver factor B mRNA levels with no change in ocular factor B mRNA levels. Plasma factor B protein levels were significantly reduced in mice and monkeys treated with factor B ASOs, leading to a dramatic reduction in ocular factor B protein, below the assay detection levels. CONCLUSIONS: The results add to the increasing evidence that the liver is the main source of plasma and ocular factor B protein, and demonstrate that reduction of liver factor B mRNA by an ASO results in a significant reduction in plasma and ocular factor B protein levels. The results suggest that inhibition of liver factor B mRNA by factor B ASOs would reduce systemic alternative complement pathway activation and has potential to be used as a novel therapy for AMD.


Subject(s)
Complement Factor B/genetics , Complement Factor B/metabolism , Eye/metabolism , Liver/metabolism , Oligonucleotides, Antisense/administration & dosage , RNA, Messenger/metabolism , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Injections, Subcutaneous , Macaca fascicularis , Male , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
6.
Immunobiology ; 221(6): 701-8, 2016 06.
Article in English | MEDLINE | ID: mdl-26307001

ABSTRACT

Systemic lupus erythematosus is an autoimmune disease that manifests in widespread complement activation and deposition of complement fragments in the kidney. The complement pathway is believed to play a significant role in the pathogenesis and in the development of lupus nephritis. Complement factor B is an important activator of the alternative complement pathway and increasing evidence supports reducing factor B as a potential novel therapy to lupus nephritis. Here we investigated whether pharmacological reduction of factor B expression using antisense oligonucleotides could be an effective approach for the treatment of lupus nephritis. We identified potent and well tolerated factor B antisense oligonucleotides that resulted in significant reductions in hepatic and plasma factor B levels when administered to normal mice. To test the effects of factor B antisense oligonucleotides on lupus nephritis, we used two different mouse models, NZB/W F1 and MRL/lpr mice, that exhibit lupus nephritis like renal pathology. Antisense oligonucleotides mediated reductions in circulating factor B levels were associated with significant improvements in renal pathology, reduced glomerular C3 deposition and proteinuria, and improved survival. These data support the strategy of using factor B antisense oligonucleotides for treatment of lupus nephritis in humans.


Subject(s)
Antigen-Antibody Complex/metabolism , Complement Factor B/genetics , Hepatocytes/physiology , Kidney/metabolism , Lupus Erythematosus, Systemic/therapy , Lupus Nephritis/therapy , Oligonucleotides, Antisense/genetics , Animals , Cells, Cultured , Complement C3/metabolism , Complement Factor B/metabolism , Complement Pathway, Alternative/genetics , Disease Models, Animal , Humans , Kidney/pathology , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Mice , Mice, Inbred MRL lpr , Mice, Inbred NZB , Proteinuria
7.
J Med Chem ; 49(4): 1231-4, 2006 Feb 23.
Article in English | MEDLINE | ID: mdl-16480259
8.
Int J Pharm ; 285(1-2): 135-46, 2004 Nov 05.
Article in English | MEDLINE | ID: mdl-15488686

ABSTRACT

MK-0869 (aprepitant), a potent substance P antagonist, is the active ingredient of EMEND which has recently been approved by the FDA for the prevention of chemotherapy-induced nausea and vomiting. Early clinical tablet formulations of MK-0869 showed significant food effects on absorption, suggesting that formulation could have a significant role in improving bioavailability. A Beagle dog model was developed in an effort to guide novel formulation development. Using the suspension of the micronized bulk drug used for the tablet formulations, the food effect on absorption was confirmed in the dog at a similar magnitude to that observed in humans. Further dog studies demonstrated a clear correlation between particle size and in vivo exposures, with the nanoparticle (NanoCrystal) colloidal dispersion formulation providing the highest exposure, suggesting dissolution-limited absorption. The NanoCrystal dispersion also eliminated the food effect on oral absorption in the dog at a dose of 2mg/kg. Regional absorption studies using triport dogs indicated that the absorption of MK-0869 was limited to the upper gastrointestinal tract. These results provided strong evidence that the large increase in surface areas of the drug nanoparticles could overcome the narrow absorption window and lead to rapid in vivo dissolution, fast absorption, and increased bioavailability. In addition, the dog model was used for optimizing formulation processes in which the nanoparticles were incorporated into solid dosage forms, and for selecting excipients to effectively re-disperse the nanoparticles from the dosage units. The human pharmacokinetic data using the nanoparticle formulation showed excellent correlations with those generated in the dog.


Subject(s)
Biological Availability , Chemistry, Pharmaceutical/methods , Morpholines/pharmacology , Nanostructures/chemistry , Absorption/drug effects , Administration, Oral , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Aprepitant , Area Under Curve , Capsules/administration & dosage , Capsules/chemistry , Capsules/pharmacokinetics , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Dogs , Drug Administration Schedule , Drug Evaluation, Preclinical , Fasting/metabolism , Food-Drug Interactions , Humans , Male , Models, Animal , Morpholines/metabolism , Morpholines/therapeutic use , Nausea/chemically induced , Nausea/prevention & control , Substance P/antagonists & inhibitors , Substance P/metabolism , Substance P/pharmacology , Tablets/administration & dosage , Tablets/chemistry , Tablets/pharmacokinetics , Technology, Pharmaceutical/methods , Technology, Pharmaceutical/trends , Upper Gastrointestinal Tract/drug effects , Upper Gastrointestinal Tract/metabolism , Vomiting/chemically induced , Vomiting/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL