Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Biochemistry ; 51(23): 4764-71, 2012 Jun 12.
Article in English | MEDLINE | ID: mdl-22612231

ABSTRACT

Plasmodium falciparum is the most prevalent and deadly species of the human malaria parasites, and thioredoxin reductase (TrxR) is an enzyme involved in the redox response to oxidative stress. Essential for P. falciparum survival, the enzyme has been highlighted as a promising target for novel antimalarial drugs. Here we report the discovery and characterization of seven molecules from an antimalarial set of 13533 compounds through single-target TrxR biochemical screens. We have produced high-purity, full-length, recombinant native enzyme from four Plasmodium species, and thioredoxin substrates from P. falciparum and Rattus norvegicus. The enzymes were screened using a unique, high-throughput, in vitro native substrate assay, and we have observed selectivity between the Plasmodium species and the mammalian form of the enzyme. This has indicated differences in their biomolecular profiles and has provided valuable insights into the biochemical mechanisms of action of compounds with proven antimalarial activity.


Subject(s)
Antimalarials/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Plasmodium/enzymology , Thioredoxin-Disulfide Reductase/antagonists & inhibitors , Animals , Antimalarials/chemistry , Cloning, Molecular , Dose-Response Relationship, Drug , Drug Resistance , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Kinetics , Molecular Structure , Plasmodium/classification , Structure-Activity Relationship , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism
2.
Protein Expr Purif ; 76(2): 165-72, 2011 Apr.
Article in English | MEDLINE | ID: mdl-20709174

ABSTRACT

DNA topoisomerase type II enzymes are well-validated targets of anti-bacterial and anti-cancer compounds. In order to facilitate discovery of these types of inhibitors human topoisomerase II in vitro assays can play an important role to support drug discovery processes. Typically, human topoisomerase IIα proteins have been purified from human cell lines or as untagged proteins from yeast cells. This study reports a method for the rapid over-expression and purification of active GST-tagged human topoisomerase IIα using the baculovirus mediated insect cell expression system. Expression of the GST fused protein was observed in the nuclear fraction of insect cells. High yields (40 mg/L i.e. 8 mg/10(9) cells) at >80% purity of this target was achieved by purification using a GST HiTrap column followed by size exclusion chromatography. Functional activity of GST-tagged human topoisomerase IIα was demonstrated by ATP-dependent relaxation of supercoiled DNA in an agarose gel based assay. An 8-fold DNA-dependent increase in ATPase activity of this target compared to its intrinsic activity was also demonstrated in a high-throughput ATPase fluorescence based assay. Human topoisomerase IIα inhibitors etoposide, quercetin and suramin were tested in the fluorescence assay. IC(50) values obtained were in good agreement with published data. These inhibitors also demonstrated ≥ 30-fold potency over the anti-bacterial topoisomerase II inhibitor ciprofloxacin in the assay. Collectively these data validated the enzyme and the high-throughput fluorescence assay as tools for inhibitor identification and selectivity studies.


Subject(s)
Antigens, Neoplasm/isolation & purification , Cloning, Molecular/methods , DNA Topoisomerases, Type II/isolation & purification , DNA-Binding Proteins/isolation & purification , High-Throughput Screening Assays/methods , Recombinant Fusion Proteins/isolation & purification , Adenosine Diphosphate/metabolism , Animals , Antigens, Neoplasm/biosynthesis , Antigens, Neoplasm/genetics , Baculoviridae/genetics , DNA Topoisomerases, Type II/biosynthesis , DNA Topoisomerases, Type II/genetics , DNA, Circular/chemistry , DNA, Circular/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/biosynthesis , DNA-Binding Proteins/genetics , Enzyme Inhibitors , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Inhibitory Concentration 50 , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Spectrometry, Fluorescence , Spodoptera/metabolism
3.
Biochem J ; 419(1): 65-73, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19061480

ABSTRACT

Identification of small-molecule inhibitors by high-throughput screening necessitates the development of robust, reproducible and cost-effective assays. The assay approach adopted may utilize isolated proteins or whole cells containing the target of interest. To enable protein-based assays, the baculovirus expression system is commonly used for generation and isolation of recombinant proteins. We have applied the baculovirus system into a cell-based assay format using NIK [NF-kappaB (nuclear factor kappaB)-inducing kinase] as a paradigm. We illustrate the use of the insect-cell-based assay in monitoring the activity of NIK against its physiological downstream substrate IkappaB (inhibitor of NF-kappaB) kinase-1. The assay was robust, yielding a signal/background ratio of 2:1 and an average Z' value of >0.65 when used to screen a focused compound set. Using secondary assays to validate a selection of the hits, we identified a compound that (i) was non-cytotoxic, (ii) interacted directly with NIK, and (iii) inhibited lymphotoxin-induced NF-kappaB p52 translocation to the nucleus. The insect cell assay represents a novel approach to monitoring kinase inhibition, with major advantages over other cell-based systems including ease of use, amenability to scale-up, protein expression levels and the flexibility to express a number of proteins by infecting with numerous baculoviruses.


Subject(s)
Biological Assay/methods , Protein Serine-Threonine Kinases/metabolism , Animals , Blotting, Western , Cell Line , Humans , I-kappa B Kinase/metabolism , Models, Biological , NF-kappa B/metabolism , NF-kappa B p52 Subunit/metabolism , Phosphorylation , Spodoptera , NF-kappaB-Inducing Kinase
4.
Bioorg Med Chem Lett ; 15(9): 2305-9, 2005 May 02.
Article in English | MEDLINE | ID: mdl-15837314

ABSTRACT

High throughput screening of Staphylococcus aureus phenylalanyl tRNA synthetase (FRS) identified ethanolamine 1 as a sub-micromolar hit. Optimisation studies led to the enantiospecific lead 64, a single-figure nanomolar inhibitor. The inhibitor series shows selectivity with respect to the mammalian enzyme and the potential for broad spectrum bacterial FRS inhibition.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Ethanolamines/chemical synthesis , Ethanolamines/pharmacology , Phenylalanine-tRNA Ligase/antagonists & inhibitors , Staphylococcus aureus/enzymology , Animals , Anti-Bacterial Agents/pharmacology , Drug Design , Kinetics , Mammals , Microbial Sensitivity Tests , Models, Molecular , Sensitivity and Specificity , Staphylococcus aureus/drug effects , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 12(21): 3171-4, 2002 Nov 04.
Article in English | MEDLINE | ID: mdl-12372526

ABSTRACT

The antimicrobial natural product chuangxinmycin has been found to be a potent and selective inhibitor of bacterial tryptophanyl tRNA synthetase (WRS). A number of analogues have been synthesised. The interaction with WRS appears to be highly constrained, as only sterically smaller analogues afforded significant inhibition. The only analogue to show inhibition comparable to chuangxinmycin also had antibacterial activity. WRS inhibition may contribute to the antibacterial action of chuangxinmycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Indoles/pharmacology , Staphylococcus aureus/enzymology , Tryptophan-tRNA Ligase/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Bacteria/drug effects , Enzyme Inhibitors/chemical synthesis , Hydrolysis , Indicators and Reagents , Indoles/chemical synthesis , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Stereoisomerism , Structure-Activity Relationship
6.
J Med Chem ; 45(10): 1959-62, 2002 May 09.
Article in English | MEDLINE | ID: mdl-11985462

ABSTRACT

Potent nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase have been derived from a file compound high throughput screening hit. Optimized compounds show excellent antibacterial activity against staphylococcal and enterococcal pathogens, including strains resistant to clinical antibiotics. Compound 11 demonstrated in vivo efficacy in an S. aureus rat abscess infection model.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Enterococcus/drug effects , Enzyme Inhibitors/chemical synthesis , Methionine-tRNA Ligase/antagonists & inhibitors , Quinolones/chemical synthesis , Staphylococcus/drug effects , Abscess/drug therapy , Abscess/microbiology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Quinolones/chemistry , Quinolones/pharmacology , Rats , Rats, Sprague-Dawley , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL