Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Plant Cell Environ ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881245

ABSTRACT

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Plant Physiol Biochem ; 207: 108394, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38295527

ABSTRACT

To interpret the final steps of chlorophyll biosynthesis, detailed knowledge of etiolation symptoms is necessary. Most of our knowledge originates from studies on plant materials grown in complete darkness. Hardly any information is available about the plastid development in internal parenchyma cells of fleshy fruits in which the food supply is almost unlimited. In this work, etiolation symptoms were studied in pericarp layers of purple eggplant (Solanum melongena L.). Tissue layers of fruits developed under open-air conditions and of etiolated fruits were dissected in a dark room. Transmission and 77 K fluorescence spectroscopy and ultrastructural studies were performed. Photosynthetic activities were measured and pigment contents were determined in light-grown fruits. The purple exocarp and a 1-1.5 cm wide green mesocarp layer of large fruits fully shade the internal pericarp layers, thus protochloropyll (ide) accumulated, flash-photoactive 644 and 655 nm emitting protochlorophyllide complexes, and only small amounts of chlorophylls were found. Photosynthetic activity was detected only in the external, green layer, which had fully developed chloroplasts, and showed 77 K fluorescence emission spectra characteristic for green leaves. The innermost endocarp regions and the etiolated fruits contained mainly protochlorophyll (ide), proplastids, and etioplasts, i.e. they showed etiolation symptoms. These symptoms correspond to those of leaves of dark-grown seedlings but are stable for long periods due to the almost unlimited nourishment supply from storage parenchyma cells. These results prove that the laboratory works with artificially dark-developed plant materials are good models of natural chlorophyll biosynthesis and plastid development.


Subject(s)
Solanum melongena , Light , Chlorophyll , Photosynthesis , Plant Leaves
3.
Plants (Basel) ; 10(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34451615

ABSTRACT

Supplemental narrow-band 311 nm UV-B radiation was applied in order to study the effect of this specific wavelength on tobacco as a model plant. UV-B at photon fluxes varying between 2.9 and 9.9 µmol m-2 s-1 was applied to supplement 150 µmol m-2 s-1 photosynthetically active radiation (PAR) for four hours in the middle of the light period for four days. Narrow-band UV-B increased leaf flavonoid and phenolic acid contents. In leaves exposed to 311 nm radiation, superoxide dismutase activity increased, but phenolic peroxidase activity decreased, and the changes were proportional to the UV flux. Ascorbate peroxidase activities were not significantly affected. Narrow-band UV-B caused a dose-dependent linear decrease in the quantum efficiency of photosystem II, up to approximately 10% loss. A parallel decrease in non-regulated non-photochemical quenching indicates potential electron transfer to oxygen in UV-treated leaves. In addition to a flux-dependent increase in the imbalance between enzymatic H2O2 production and neutralization, this resulted in an approximately 50% increase in leaf H2O2 content under 2.9-6 µmol m-2 s-1 UV-B. Leaf H2O2 decreased to control levels under higher UV-B fluxes due to the onset of increased non-enzymatic H2O2- and superoxide-neutralizing capacities, which were not observed under lower fluxes. These antioxidant responses to 311 nm UV-B were different from our previous findings in plants exposed to broad-band UV-B. The results suggest that signaling pathways activated by 311 nm radiation are distinct from those stimulated by other wavelengths and support the heterogeneous regulation of plant UV responses.

4.
Sci Rep ; 10(1): 16303, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004945

ABSTRACT

Tobacco plants were grown in plant chambers for four weeks, then exposed to one of the following treatments for 4 days: (1) daily supplementary UV-B radiation corresponding to 6.9 kJ m-2 d-1 biologically effective dose (UV-B), (2) daily irrigation with 0.1 mM hydrogen peroxide, or (3) a parallel application of the two treatments (UV-B + H2O2). Neither the H2O2 nor the UV-B treatments were found to be damaging to leaf photosynthesis. Both single factor treatments increased leaf H2O2 contents but had distinct effects on various H2O2 neutralising mechanisms. Non-enzymatic H2O2 antioxidant capacities were increased by direct H2O2 treatment only, but not by UV-B. In contrast, enzymatic H2O2 neutralisation was mostly increased by UV-B, the responses showing an interesting diversity. When class-III peroxidase (POD) activity was assayed using an artificial substrate (ABTS, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)), both treatments appeared to have a positive effect. However, only UV-B-treated leaves showed higher POD activities when phenolic compounds naturally occurring in tobacco leaves (chlorogenic acid or quercetin) were used as substrates. These results demonstrate a substrate-dependent, functional heterogeneity in POD and further suggest that the selective activation of specific isoforms in UV-B acclimated leaves is not triggered by excess H2O2 in these leaves.


Subject(s)
Nicotiana/radiation effects , Peroxidases/physiology , Plant Proteins/physiology , Acclimatization , Antioxidants/metabolism , Hydrogen Peroxide/metabolism , Peroxidases/metabolism , Phenols/metabolism , Plant Proteins/metabolism , Nicotiana/enzymology , Ultraviolet Rays
6.
Photochem Photobiol Sci ; 19(2): 217-228, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31961357

ABSTRACT

Pyridoxine (vitamin B6) and its vitamers are used by living organisms both as enzymatic cofactors and as antioxidants. We used Arabidopsis pyridoxine biosynthesis mutant pdx1.3-1 to study the involvement of the PLP-synthase main polypeptide PDX1 in plant responses to ultraviolet radiation of two different qualities, one containing primarily UV-A (315-400 nm) and the other containing both UV-A and UV-B (280-315 nm). The antioxidant capacity and the flavonoid and glucosinolate (GS) profiles were examined. As an indicator of stress, Fv/Fm of photosystem II reaction centers was used. In pdx1.3-1, UV-A + B exposure led to a significant 5% decrease in Fv/Fm on the last day (day 15), indicating mild stress at this time point. The antioxidant capacity of Col-0 wildtype increased significantly (50-73%) after 1 and 3 days of UV-A + B. Instead, in pdx1.3-1, the antioxidant capacity significantly decreased by 44-52% over the same time period, proving the importance of a full complement of functional PDX1 genes for the detoxification of reactive oxygen species. There were no significant changes in the flavonoid glycoside profile under any light condition. However, the GS profile was significantly altered, both with respect to Arabidopsis accession and exposure to UV. The difference in flavonoid and GS profiles reflects that the GS biosynthesis pathway contains at least one pyridoxine-dependent enzyme, whereas no such enzyme is used in flavonoid biosynthesis. Also, there was strong correlation between the antioxidant capacity and the content of some GS compounds. Our results show that vitamin B6 vitamers, functioning both as antioxidants and co-factors, are of importance for the physiological fitness of plants.


Subject(s)
Antioxidants/chemistry , Arabidopsis Proteins/metabolism , Arabidopsis/radiation effects , Carbon-Nitrogen Lyases/metabolism , Glucosinolates/biosynthesis , Ultraviolet Rays , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Carbon-Nitrogen Lyases/genetics , Chromatography, High Pressure Liquid , Flavonoids/biosynthesis , Glucosinolates/analysis , Mutagenesis , Photosystem II Protein Complex/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism
7.
Front Plant Sci ; 11: 611247, 2020.
Article in English | MEDLINE | ID: mdl-33584754

ABSTRACT

Ultraviolet-B (UV-B; 280-315 nm) radiation induces the biosynthesis of secondary plant metabolites such as flavonoids. Flavonoids could also be enhanced by blue (420-490 nm) or green (490-585 nm) light. Flavonoids act as antioxidants and shielding components in the plant's response to UV-B exposure. They are shown to quench singlet oxygen and to be reactive to hydroxyl radical. The aim was to determine whether treatment with blue or green light can alter flavonoid profiles after pre-exposure to UV-B and whether they cause corresponding biological effects in Brassicaceae sprouts. Based on their different flavonoid profiles, three vegetables from the Brassicaceae were selected. Sprouts were treated with five subsequent doses (equals 5 days) of moderate UV-B (0.23 kJ m-2 day-1 UV-BBE), which was followed with two subsequent (equals 2 days) doses of either blue (99 µmol m-2 s-1) or green (119 µmol m-2 s-1) light. In sprouts of kale, kohlrabi, and rocket salad, flavonoid glycosides were identified by HPLC-DAD-ESI-MSn. Both Brassica oleracea species, kale and kohlrabi, showed mainly acylated quercetin and kaempferol glycosides. In contrast, in rocket salad, the main flavonol glycosides were quercetin glycosides. Blue light treatment after the UV-B treatment showed that quercetin and kaempferol glycosides were increased in the B. oleracea species kale and kohlrabi while-contrary to this-in rocket salad, there were only quercetin glycosides increased. Blue light treatment in general stabilized the enhanced concentrations of flavonoid glycosides while green treatment did not have this effect. Blue light treatment following the UV-B exposure resulted in a trend of increased singlet oxygen scavenging for kale and rocket. The hydroxyl radical scavenging capacity was independent from the light quality except for kale where an exposure with UV-B followed by a blue light treatment led to a higher hydroxyl radical scavenging capacity. These results underline the importance of different light qualities for the biosynthesis of reactive oxygen species that intercept secondary plant metabolites, but also show a pronounced species-dependent reaction, which is of special interest for growers.

8.
Sci Rep ; 9(1): 1259, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30718682

ABSTRACT

Direct and indirect roles of vitamin B6 in leaf acclimation to supplementary UV-B radiation are shown in vitamin B6 deficient Arabidopsis thaliana mutant rsr4-1 and C24 wild type. Responses to 4 days of 3.9 kJ m-2 d-1 biologically effective UV-B dose were compared in terms of leaf photochemistry, vitamer content, and antioxidant enzyme activities; complemented with a comprehensive study of vitamer ROS scavenging capacities. Under UV-B, rsr4-1 leaves lost more (34%) photochemical yield than C24 plants (24%). In the absence of UV-B, rsr4-1 leaves contained markedly less pyridoxal-5'-phosphate (PLP) than C24 ones, but levels increased up to the C24 contents in response to UV-B. Activities of class-III ascorbate and glutathione peroxidases increased in C24 leaves upon the UV-B treatment but not in the rsr4-1 mutant. SOD activities remained the same in C24 but decreased by more than 50% in rsr4-1 under UV-B. Although PLP was shown to be an excellent antioxidant in vitro, our results suggest that the UV-B protective role of B6 vitamers is realized indirectly, via supporting peroxidase defence rather than by direct ROS scavenging. We hypothesize that the two defence pathways are linked through the PLP-dependent biosynthesis of cystein and heme, affecting peroxidases.


Subject(s)
Acclimatization , Arabidopsis/radiation effects , Vitamin B 6/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Reactive Oxygen Species/metabolism , Ultraviolet Rays/adverse effects , Vitamin B 6/genetics
9.
Plant Physiol Biochem ; 137: 169-178, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30797184

ABSTRACT

Photosynthesis parameters, adaxial flavonoid index, phenolic profiles and antioxidant capacities of south-facing sun exposed grapevine leaves (Vitis vinifera, Pinot Noir cultivar) were measured hourly between 7 a.m. and 7 p.m. on a clear summer day. Changes in these parameters were statistically compared to changes in environmental conditions, including solar irradiance (photosynthetically active and UV radiations), leaf and air temperature, and relative air humidity. Epidermal UV absorbance, characterised by the flavonoid index, and total extractable phenolic contents were correlated to distinct environmental parameters. The former was positively correlated to irradiance and leaf temperature, while the latter was positively correlated to air temperature. HPLC phenolic profiling identified a positive correlation between air temperature and amounts of the dominant flavonol component, quercetin-3-O-glucuronide. The only phenolic component statistically connected to the flavonoid index was quercetin-3-O-glucoside. This correlation was positive and both parameters decreased during the day, although changes in the amount of this flavonol component showed no correlation to environmental factors. Total antioxidant capacities of leaf extracts were positively correlated to solar UV, and leaf and air temperature, but not to photosynthetically active radiation. Positive correlations of quercetin-3-O-glucoside contents with the flavonoid index, with photosynthesis and with sub-stomatal CO2 concentration suggest a special protective role of this flavonol. A short-term negative effect of solar UV-A and UV-B on photosynthetic CO2 uptake was also identified, which was unrelated to changes in stomatal conductance. A hypothesis is presented assuming UV- and photorespiration-derived hydrogen peroxide as the driver of daily changes in leaf antioxidant capacities.


Subject(s)
Phenols/metabolism , Plant Leaves/metabolism , Vitis/physiology , Antioxidants/metabolism , Chlorophyll/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Hungary , Photosynthesis , Plant Leaves/chemistry , Quercetin/analogs & derivatives , Quercetin/metabolism , Sunlight , Temperature , Ultraviolet Rays , Vitis/radiation effects , Weather
11.
Plant Physiol Biochem ; 134: 9-19, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30224262

ABSTRACT

Potentials of UV-B (280-315 nm) radiation to alleviate effects of water deficit were studied using Nicotiana benthamiana plants in growth chambers. 10-days of limited watering resulted in 40% loss of soil water content as compared to well-watered controls. This drought was applied in three different ways: (i) in itself, (ii) after 4-days exposure of 6.9 kJ m-2 d-1 biologically effective supplementary UV-B radiation as pre-treatment, or (iii) in parallel with 6.9 kJ m-2 d-1 biologically effective supplementary UV-B. Responses were examined in two leaf groups: fully developed mature leaves (ML) and young leaves emerging during the 10-day treatment (YL). ML responded to UV-B or drought as single factor treatments with 7-14% loss of photochemical yield, while YL photochemistry was not decreased under the same conditions. The parallel two-factor treatment had no aggravating effect but alleviated drought-induced loss of leaf photochemistry in ML. Several positive single factor effects of drought or UV-B on antioxidants remained significant in the two-factor treatment both in ML and YL. Effects of the two factors applied in parallel were additive (equal to the sum of the effects caused by single factors separately) on total antioxidant capacities and singlet oxygen neutralizing; and synergistic (larger than the sum of single factor effects) on the flavonoid index in ML. A sequential application of UV-B and drought had additive positive effects on antioxidant capacity and flavonoid index of ML suggesting lasting effects of UV-B pre-treatment.


Subject(s)
Antioxidants/metabolism , Droughts , Nicotiana/physiology , Nicotiana/radiation effects , Plant Leaves/physiology , Plant Leaves/radiation effects , Ultraviolet Rays
12.
J Photochem Photobiol B ; 190: 137-145, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30529924

ABSTRACT

Over the past decades, nanotechnology has received great attention and brought revolutionary solutions for a number of challenges in scientific fields. Industrial, agricultural and medical applications of engineered nanomaterials have increased intensively. The ability of titanium dioxide nanoparticles (TiO2 NPs) to produce reactive oxygen species (ROS), when excited by ultra-violet (UV) light, makes them useful for effectively inactivate various pathogens. It is known that ROS also have signalling role in living organisms, therefore, TiO2 NPs-induced ROS can influence both enzymatic and non-enzymatic defence systems, and could play a role in the resistance of plants to pathogens. Herein, we studied the photocatalytic stress responses of grapevine (Vitis vinifera L.) as model plant, when exposed to a well-known photocatalyst, Degussa P25 TiO2 NPs. The photocatalytically produced ROS such as superoxide anion, hydroxyl radical and singlet oxygen were confirmed by electron paramagnetic resonance spectroscopy. Foliar exposure of five red cultivars (Cabernet sauvignon, Cabernet franc, Merlot, Kékfrankos and Kadarka) was carried out in blooming phenophase under field condition where plants are exposed to natural sunlight with relatively high UV radiation (with a maximum of ~ 45 W m-2). After two weeks of exposure, the effects of photogenerated ROS on the total phenolic content, antioxidant capacity, flavonol profile and the main macro-, microelements of the leaves were studied in detail. We found that foliar application of TiO2 NPs boosted the total phenolic content and biosynthesis of the leaf flavonols depending on the grapevine variety. Photocatalytically active TiO2 NPs also increased K, Mg, Ca, B and Mn levels in the leaves as shown by ICP-AES measurements.


Subject(s)
Plant Leaves/drug effects , Titanium/pharmacology , Vitis/chemistry , Antioxidants/analysis , Flavonols/analysis , Nanostructures/chemistry , Nanostructures/radiation effects , Phenols/analysis , Plant Leaves/chemistry , Plant Leaves/metabolism , Reactive Oxygen Species/metabolism , Titanium/radiation effects , Ultraviolet Rays
13.
Photochem Photobiol Sci ; 18(2): 359-366, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30534744

ABSTRACT

ß-Aminobutyric acid (BABA) pre-treatment has been shown to alter both biotic and abiotic stress responses. The present study extends this observation to acclimative UV-B-response, which has not been explored in this context so far. A single soil application of 300 ppm BABA modified the non-enzymatic antioxidant capacities and the leaf hydrogen peroxide levels in tobacco (Nicotiana tabacum L.) leaves in response to a 9-day treatment with 5.4 kJ m-2 d-1 biologically effective supplementary UV-B radiation in a model experiment that was performed in a growth chamber. BABA decreased leaf hydrogen peroxide levels both as a single factor and in combination with UV-B, but neither BABA nor UV-B affected leaf photochemistry significantly. The total antioxidant capacities were increased by either BABA or UV-B, and this response was additive in BABA pre-treated leaves. These results together with the observed changes in hydroxyl radical neutralising ability and non-enzymatic hydrogen peroxide antioxidant capacities show that BABA pre-treatment (i) has a long-term effect on leaf antioxidants even in the absence of other factors and (ii) modifies acclimative readjustment of prooxidant-antioxidant balance in response to UV-B. BABA-inducible antioxidants do not include phenolic compounds as a UV-B-induced increase in the adaxial leaf flavonoid index and total leaf extract UV absorption were unaffected by BABA.


Subject(s)
Acclimatization/radiation effects , Aminobutyrates/pharmacology , Nicotiana/drug effects , Nicotiana/radiation effects , Plant Leaves/drug effects , Plant Leaves/radiation effects , Ultraviolet Rays , Acclimatization/drug effects , Dose-Response Relationship, Drug , Plant Leaves/physiology , Nicotiana/physiology
14.
Phytochem Anal ; 29(2): 129-136, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28895264

ABSTRACT

INTRODUCTION: Phenolic compounds are a chemically diverse group of plant secondary metabolites with important roles both in plant stress defence and human nutrition. OBJECTIVE: To explore structure-function relations potentiating phenolic compounds to promote leaf acclimation to light stress by excess photosynthetically active radiation (photoinhibition) and by solar ultraviolet (UV) radiation. METHODOLOGY: We report singlet oxygen and hydrogen peroxide antioxidant capacities and UV-absorbing properties of 27 flavonoids and 11 phenolic acids. Correlations of these characteristics in the whole data set and related activity-structure relationships in flavonoid data were investigated using simple statistical methods. RESULTS: In comparison to flavonoids, phenolic acids are relatively ineffective reactive oxygen neutralising antioxidants; and - with the exception of gallic acid - have poor reactivity to hydrogen peroxide. Singlet oxygen and hydrogen peroxide detoxifying capacities of flavonoids are positively correlated, largely due to the strong positive effect of the hydroxylation of the C-ring in position-3. 3-O-Glycosylation halves reactive oxygen species (ROS) reactivities of quercetin and myricetin but eradicates the hydrogen peroxide reactivity of kaemferol. B-ring polyhydroxylation (cathecol structure) increases the hydrogen peroxide antioxidant function but decreases UV-B (280-315 nm) absorption. UV-A (315-400 nm) absorption is increased by the B-ring C2-C3 double bond either in itself or in combination with the C4 oxo-group. CONCLUSION: Among the studied compounds, anthocyanins and flavonols were the strongest singlet oxygen and hydrogen peroxide scavengers, and are thus capable of supporting defence against both photoinhibition by visible light and UV stress in leaves, while flavanols may only be effective against the latter. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Oxidative Stress , Phenols/metabolism , Plant Leaves/drug effects , Sunlight , Anthocyanins/metabolism , Flavonoids/metabolism , Gallic Acid/metabolism , Glycosylation , Hydrogen Peroxide/metabolism , Phenols/chemistry , Photosynthesis , Plant Leaves/physiology , Plant Leaves/radiation effects , Singlet Oxygen/metabolism , Spectrophotometry, Ultraviolet , Structure-Activity Relationship
15.
J Plant Physiol ; 221: 101-106, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29272746

ABSTRACT

Efficient hydrogen peroxide detoxification is an essential aspect of plant defence against a large variety of stressors. Among others, class III peroxidase (POD, EC 1.11.1.7) enzymes provide this function. Previous studies have shown that PODs are present in several isoforms and have in general low substrate specificities. The aim of our work was to study how various assays based on using various substrates reflect differences in peroxidase activities of tobacco leaves due to either developmental or environmental factors. The former factor was studied comparing fully developed leaves of the 3rd and 5th nodes; and the latter was achieved using plants acclimated to low doses of supplementary UV-B (280-315 nm) in growth chambers. To investigate the above, POD activities were measured using three different, commonly used chromophore substrates: ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)), guaiacol (2-methoxyphenol), OPD (o-phenylenediamine) and a fourth substrate, the secondary metabolite quercetin. All substrates registered a UV-B induced increase in leaf peroxidases as compared to untreated controls, although to different extents. However, age-related differences between upper and lower leaves were only detectable when either ABTS or quercetin were used as substrates. Additionally, native PAGE separation of POD isoforms followed by visualisation using one of the substrates showed that leaf acclimation to supplementary UV-B is realized via a selective activation of POD isoforms.


Subject(s)
Antioxidants/pharmacology , Nicotiana/radiation effects , Peroxidases/genetics , Plant Proteins/genetics , Quercetin/pharmacology , Ultraviolet Rays , Benzothiazoles/pharmacology , Guaiacol/pharmacology , Isoenzymes/genetics , Isoenzymes/metabolism , Peroxidases/metabolism , Phenylenediamines/pharmacology , Plant Leaves/enzymology , Plant Leaves/radiation effects , Plant Proteins/metabolism , Sulfonic Acids/pharmacology , Nicotiana/enzymology
16.
Plant Cell Environ ; 40(11): 2790-2805, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28792065

ABSTRACT

A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive ß-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.


Subject(s)
Climate , Plant Leaves/anatomy & histology , Plant Leaves/physiology , Vitis/anatomy & histology , Vitis/physiology , Absorption, Radiation , Antioxidants/metabolism , Biomass , Carotenoids/analysis , Europe , Geography , Metabolome , Phenols/analysis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Principal Component Analysis , Ultraviolet Rays , Vitis/metabolism , Vitis/radiation effects , Xanthophylls/analysis , alpha-Tocopherol/analysis
17.
Acta Biol Hung ; 67(4): 447-450, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28000506

ABSTRACT

Assays assessing non-enzymatic hydrogen peroxide antioxidant capacities are often hampered by the high UV absorption of the sample itself. This is a typical problem in studies using plant extracts with high polyphenol content. Our assay is based on comparing the 405 nm absorption of the product of potassium iodine and hydrogen peroxide in the presence and absence of a putative hydrogen peroxide reactive antioxidant. This method is free of interference with either hydrogen peroxide or antioxidant self-absorption and it is also suitable for high-throughput plate reader applications.


Subject(s)
Antioxidants/metabolism , Chemistry Techniques, Analytical/methods , Hydrogen Peroxide/metabolism , Plant Extracts/metabolism , Potassium Iodide/metabolism , Ultraviolet Rays , Polyphenols/metabolism
18.
J Agric Food Chem ; 64(46): 8722-8734, 2016 Nov 23.
Article in English | MEDLINE | ID: mdl-27794599

ABSTRACT

Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.


Subject(s)
Vitis/chemistry , Vitis/metabolism , Altitude , Anthocyanins/analysis , Anthocyanins/metabolism , Ecosystem , Europe , Flavonols/analysis , Flavonols/metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Fruit/radiation effects , Polyphenols/analysis , Polyphenols/metabolism , Ultraviolet Rays , Vitis/growth & development , Vitis/radiation effects
19.
J Plant Physiol ; 201: 95-100, 2016 Aug 20.
Article in English | MEDLINE | ID: mdl-27448725

ABSTRACT

Leaf peroxidases play a key role in the successful acclimation of plants to low UV-B doses. The aim of the present study was to examine whether selective enhancement of alternative chloroplast antioxidant pathways achieved by chloroplast transformation affected the need for peroxidase defense. Transplastomic tobacco lines expressing glutathione reductase in combination with either dehydroascorbate reductase or glutathione-S-transferase in their plastids exhibited better tolerance to supplemental UV-B than wild type plants. After 10days UV treatment, both the maximum and effective quantum yields of PSII decreased in the wild type by 10% but were unaffected in either of the transformed lines. Activities of total peroxidase and ascorbate peroxidase, in addition to dehydroascorbate reductase and gluthatione-S-transferase, were increased by UV in all lines. Gluthatione reductase activity was unaffected by UV in the transplastomic line engineered to have a higher constitutive level of this enzyme, but increased in the two other genotypes. However, the observed more successful acclimation required less activation of peroxidases in the doubly transformed plants than in the wild type and less increase in non-enzymatic hydroxyl radical neutralization in the dehydroascorbate reductase plus glutathione reductase fortified plants than in either of the other lines. These results highlight the fundamental role of efficient glutathione, and especially ascorbate, recycling in the chloroplast in response to exposure of plants to UV-B. They also identify chloroplast localized peroxidases among the large variety of leaf peroxidases as essential elements of defense, supporting our earlier hypothesis on hydrogen peroxide UV-B photo-cleavage as the primary mechanism behind damage.


Subject(s)
Acclimatization/radiation effects , Nicotiana/enzymology , Nicotiana/physiology , Peroxidases/metabolism , Plastids/enzymology , Reactive Oxygen Species/metabolism , Ultraviolet Rays , Antioxidants/metabolism , Hydroxyl Radical/metabolism , Photosynthesis/radiation effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plants, Genetically Modified , Plastids/genetics , Plastids/radiation effects , Nicotiana/genetics , Nicotiana/radiation effects
20.
J Photochem Photobiol B ; 161: 422-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27318297

ABSTRACT

Photosynthetic activity was identified in the under-soil hypocotyl part of 14-day-old soil-grown bean plants (Phaseolus vulgaris L. cv. Magnum) cultivated in pots under natural light-dark cycles. Electron microscopic, proteomic and fluorescence kinetic and imaging methods were used to study the photosynthetic apparatus and its activity. Under-soil shoots at 0-2cm soil depth featured chloroplasts with low grana and starch grains and with pigment-protein compositions similar to those of the above-soil green shoot parts. However, the relative amounts of photosystem II (PSII) supercomplexes were higher; in addition a PIP-type aquaporin protein was identified in the under-soil thylakoids. Chlorophyll-a fluorescence induction measurements showed that the above- and under-soil hypocotyl segments had similar photochemical yields at low (10-55µmolphotonsm(-2)s(-1)) light intensities. However, at higher photon flux densities the electron transport rate decreased in the under-soil shoot parts due to inactivation of the PSII reaction centers. These properties show the development of a low-light adapted photosynthetic apparatus driven by light piping of the above-soil shoot. The results of this paper demonstrate that the classic model assigning source and sink functions to above- and under-soil tissues is to be refined, and a low-light adapted photosynthetic apparatus in under-soil bean hypocotyls is capable of contributing to its own carbon supply.


Subject(s)
Light , Phaseolus/metabolism , Photosynthesis/radiation effects , Chlorophyll/metabolism , Chloroplasts/metabolism , Hypocotyl/chemistry , Hypocotyl/metabolism , Mass Spectrometry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Phaseolus/growth & development , Photosystem II Protein Complex/metabolism , Plant Leaves/metabolism , Plastids/metabolism , Proteome/analysis , Proteomics , Soil/chemistry , Thylakoids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...