Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 09 14.
Article in English | MEDLINE | ID: mdl-36102623

ABSTRACT

Sphingomyelin is a dominant sphingolipid in mammalian cells. Its production in the trans-Golgi traps cholesterol synthesized in the ER to promote formation of a sphingomyelin/sterol gradient along the secretory pathway. This gradient marks a fundamental transition in physical membrane properties that help specify organelle identify and function. We previously identified mutations in sphingomyelin synthase SMS2 that cause osteoporosis and skeletal dysplasia. Here, we show that SMS2 variants linked to the most severe bone phenotypes retain full enzymatic activity but fail to leave the ER owing to a defective autonomous ER export signal. Cells harboring pathogenic SMS2 variants accumulate sphingomyelin in the ER and display a disrupted transbilayer sphingomyelin asymmetry. These aberrant sphingomyelin distributions also occur in patient-derived fibroblasts and are accompanied by imbalances in cholesterol organization, glycerophospholipid profiles, and lipid order in the secretory pathway. We postulate that pathogenic SMS2 variants undermine the capacity of osteogenic cells to uphold nonrandom lipid distributions that are critical for their bone forming activity.


Subject(s)
Secretory Pathway , Sphingomyelins , Animals , Cholesterol , Glycerophospholipids , Mammals/metabolism , Mice , Mice, Knockout , Sphingomyelins/metabolism , Transferases (Other Substituted Phosphate Groups)
2.
Nat Commun ; 13(1): 1875, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35388011

ABSTRACT

Lysosomes are vital organelles vulnerable to injuries from diverse materials. Failure to repair or sequester damaged lysosomes poses a threat to cell viability. Here we report that cells exploit a sphingomyelin-based lysosomal repair pathway that operates independently of ESCRT to reverse potentially lethal membrane damage. Various conditions perturbing organelle integrity trigger a rapid calcium-activated scrambling and cytosolic exposure of sphingomyelin. Subsequent metabolic conversion of sphingomyelin by neutral sphingomyelinases on the cytosolic surface of injured lysosomes promotes their repair, also when ESCRT function is compromised. Conversely, blocking turnover of cytosolic sphingomyelin renders cells more sensitive to lysosome-damaging drugs. Our data indicate that calcium-activated scramblases, sphingomyelin, and neutral sphingomyelinases are core components of a previously unrecognized membrane restoration pathway by which cells preserve the functional integrity of lysosomes.


Subject(s)
Calcium , Sphingomyelins , Calcium/metabolism , Cytosol/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Lysosomes/metabolism , Sphingomyelins/metabolism
3.
J Lipid Res ; 59(3): 515-530, 2018 03.
Article in English | MEDLINE | ID: mdl-29343537

ABSTRACT

Ceramides are central intermediates of sphingolipid metabolism with dual roles as mediators of cellular stress signaling and mitochondrial apoptosis. How ceramides exert their cytotoxic effects is unclear and their poor solubility in water hampers a search for specific protein interaction partners. Here, we report the application of a photoactivatable and clickable ceramide analog, pacCer, to identify ceramide binding proteins and unravel the structural basis by which these proteins recognize ceramide. Besides capturing ceramide transfer protein (CERT) from a complex proteome, our approach yielded CERT-related steroidogenic acute regulatory protein D7 (StarD7) as novel ceramide binding protein. Previous work revealed that StarD7 is required for efficient mitochondrial import of phosphatidylcholine (PC) and serves a critical role in mitochondrial function and morphology. Combining site-directed mutagenesis and photoaffinity labeling experiments, we demonstrate that the steroidogenic acute regulatory transfer domain of StarD7 harbors a common binding site for PC and ceramide. While StarD7 lacks robust ceramide transfer activity in vitro, we find that its ability to shuttle PC between model membranes is specifically affected by ceramides. Besides demonstrating the suitability of pacCer as a tool to hunt for ceramide binding proteins, our data point at StarD7 as a candidate effector protein by which ceramides may exert part of their mitochondria-mediated cytotoxic effects.


Subject(s)
Carrier Proteins/metabolism , Ceramides/metabolism , Lipids , Carrier Proteins/biosynthesis , HeLa Cells , Humans , Mitochondria/metabolism
4.
Biosci Rep ; 37(4)2017 Aug 31.
Article in English | MEDLINE | ID: mdl-28659495

ABSTRACT

Ceramides are essential precursors of sphingolipids with a dual role as mediators of apoptotic cell death. Previous work revealed that the ER-resident ceramide phosphoethanolamine (CPE) synthase SMSr/SAMD8 is a suppressor of ceramide-mediated apoptosis in cultured cells. Anti-apoptotic activity of SMSr requires a catalytically active enzyme but also relies on the enzyme's N-terminal sterile α-motif or SAM domain. Here, we demonstrate that SMSr itself is a target of the apoptotic machinery. Treatment of cells with staurosporine or the death receptor ligand FasL triggers caspase-mediated cleavage of SMSr at a conserved aspartate located downstream of the enzyme's SAM domain and upstream of its first membrane span. Taking advantage of reconstitution experiments with SMSr produced in a cell-free expression system, specific caspase-inhibitors and gene silencing approaches, we show that SMSr is a novel and specific substrate of caspase-6, a non-conventional effector caspase implicated in Huntington's and Alzheimer's diseases. Our findings underscore a role of SMSr as negative regulator of ceramide-induced cell death and, in view of a prominent expression of the enzyme in brain, raise questions regarding its potential involvement in neurodegenerative disorders.


Subject(s)
Apoptosis , Caspase 6/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Caspase 6/genetics , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , HeLa Cells , Humans , Protein Domains , Transferases (Other Substituted Phosphate Groups)/genetics
5.
J Lipid Res ; 58(5): 962-973, 2017 05.
Article in English | MEDLINE | ID: mdl-28336574

ABSTRACT

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS)1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog, ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, SMS-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate the head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with Glu permitting SMS-catalyzed CPE production and Asp confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Subject(s)
Catalytic Domain , Mutagenesis, Site-Directed , Sphingolipids/metabolism , Transferases (Other Substituted Phosphate Groups)/chemistry , Transferases (Other Substituted Phosphate Groups)/metabolism , Amino Acid Sequence , Cell Line, Tumor , Humans , Protein Domains , Substrate Specificity , Transferases (Other Substituted Phosphate Groups)/genetics
6.
Sci Rep ; 7: 41290, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28120887

ABSTRACT

SMSr/SAMD8 is an ER-resident ceramide phosphoethanolamine synthase with a critical role in controlling ER ceramides and suppressing ceramide-induced apoptosis in cultured cells. SMSr-mediated ceramide homeostasis relies on the enzyme's catalytic activity as well as on its N-terminal sterile α-motif or SAM domain. Here we report that SMSr-SAM is structurally and functionally related to the SAM domain of diacylglycerol kinase DGKδ, a central regulator of lipid signaling at the plasma membrane. Native gel electrophoresis indicates that both SAM domains form homotypic oligomers. Chemical crosslinking studies show that SMSr self-associates into ER-resident trimers and hexamers that resemble the helical oligomers formed by DGKδ-SAM. Residues critical for DGKδ-SAM oligomerization are conserved in SMSr-SAM and their substitution causes a dissociation of SMSr oligomers as well as a partial redistribution of the enzyme to the Golgi. Conversely, treatment of cells with curcumin, a drug disrupting ceramide and Ca2+ homeostasis in the ER, stabilizes SMSr oligomers and promotes retention of the enzyme in the ER. Our data provide first demonstration of a multi-pass membrane protein that undergoes homotypic oligomerization via its SAM domain and indicate that SAM-mediated self-assembly of SMSr is required for efficient retention of the enzyme in the ER.

7.
J Lipid Res ; 57(7): 1273-85, 2016 07.
Article in English | MEDLINE | ID: mdl-27165857

ABSTRACT

SM is a fundamental component of mammalian cell membranes that contributes to mechanical stability, signaling, and sorting. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, a reaction catalyzed by SM synthase (SMS) 1 in the Golgi and SMS2 at the plasma membrane. Mammalian cells also synthesize trace amounts of the SM analog ceramide phosphoethanolamine (CPE), but the physiological relevance of CPE production is unclear. Previous work revealed that SMS2 is a bifunctional enzyme producing both SM and CPE, whereas a closely related enzyme, sphingomyelin synthase-related protein (SMSr)/SAMD8, acts as a monofunctional CPE synthase in the endoplasmatic reticulum. Using domain swapping and site-directed mutagenesis on enzymes expressed in defined lipid environments, we here identified structural determinants that mediate head group selectivity of SMS family members. Notably, a single residue adjacent to the catalytic histidine in the third exoplasmic loop profoundly influenced enzyme specificity, with glutamic acid permitting SMS-catalyzed CPE production and aspartic acid confining the enzyme to produce SM. An exchange of exoplasmic residues with SMSr proved sufficient to convert SMS1 into a bulk CPE synthase. This allowed us to establish mammalian cells that produce CPE rather than SM as the principal phosphosphingolipid and provide a model of the molecular interactions that impart catalytic specificity among SMS enzymes.


Subject(s)
Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Protein Engineering , Sphingomyelins/biosynthesis , Transferases (Other Substituted Phosphate Groups)/genetics , Cell Membrane/enzymology , Cell Membrane/metabolism , Cell-Free System , Click Chemistry , Endoplasmic Reticulum/enzymology , Golgi Apparatus/enzymology , HeLa Cells , Humans , Membrane Proteins/chemistry , Mutagenesis, Site-Directed , Nerve Tissue Proteins/chemistry , Sphingomyelins/genetics , Transferases (Other Substituted Phosphate Groups)/chemistry
8.
J Cell Sci ; 127(Pt 2): 445-54, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24259670

ABSTRACT

Cells synthesize ceramides in the endoplasmic reticulum (ER) as precursors for sphingolipids to form an impermeable plasma membrane. As ceramides are engaged in apoptotic pathways, cells would need to monitor their levels closely to avoid killing themselves during sphingolipid biosynthesis. How this is accomplished remains to be established. Here we identify SMSr (SAMD8), an ER-resident ceramide phosphoethanolamine (CPE) synthase, as a suppressor of ceramide-mediated cell death. Disruption of SMSr catalytic activity causes a rise in ER ceramides and their mislocalization to mitochondria, triggering a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile α-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels to prevent inappropriate cell death during sphingolipid biosynthesis.


Subject(s)
Apoptosis , Ceramides/metabolism , Mitochondria/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism , Biocatalysis , Ceramidases/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Gene Targeting , HeLa Cells , Humans , Protein Transport , RNA, Small Interfering/metabolism , Signal Transduction , Sphingomyelins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL