Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 268
Filter
1.
Brain Cogn ; 180: 106208, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39111187

ABSTRACT

This study aimed to evaluate whether cerebral oxygenation of the prefrontal cortex and associative-dissociative focus while completing the task mediate changes in cognition during exercise. Seventy-five young college-aged adults participated in this within-subjects randomized cross-over two-arm experimental design. During each session, participants completed a Stroop task four separate times: at baseline, two times during the exercise session, and at post-test. The experimental arm session involved participants cycling first at a moderate intensity, followed by cycling at a vigorous intensity. The active control arm session involved participants cycling at a very light intensity to ensure any effects were attributable to the level of exertion rather than the control of motor coordination. Cerebral oxygenation of the prefrontal cortex was assessed using fNIRS, while associate-dissociate attention was assessed using a self-report scale to provide insight into two hypothesized mechanisms which may contribute to alterations in cognition during exercise. Replicating well-established findings, results showed that during vigorous-intensity exercise, accuracy rates decreased for the most cognitively demanding conditions of the Stroop task, while reaction times were generally shorter compared to baseline. Neither shifting of attention in response to the dual-task nor prefrontal cortex oxygenation were observed to mediate cognitive deficits associated with vigorous exercise.

2.
Brain Cogn ; 180: 106205, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39053200

ABSTRACT

Team-based physical activity (PA) can improve social cognition; however, few studies have investigated the neurobiological mechanism underlying this benefit. Accordingly, a hyper-scanning protocol aimed to determine whether the interbrain synchrony (IBS) is influenced by an acute bout of team-based PA (i.e., tandem rope skipping). Specifically, we had socially avoidant participants (SOA, N=15 dyads) and their age-matched controls (CO, N=16 dyads) performed a computer-based cooperative task while EEG was recorded before and after two different experimental conditions (i.e., 30-min of team-based PA versus sitting). Phase locking value (PLV) was used to measure IBS. Results showed improved frontal gamma band IBS after the team-based PA compared to sitting when participants received successful feedback in the task (Mskipping = 0.016, Msittting = -0.009, p = 0.082, ηp2 = 0.387). The CO group showed a larger change in frontal and central gamma band IBS when provided failure feedback in the task (Mskipping = 0.017, Msittting = -0.009, p = 0.075, ηp2 = 0.313). Thus, results suggest that socially avoidant individuals may benefit from team-based PA via improved interbrain synchrony. Moreover, our findings deepen our understanding of the neurobiological mechanism by which team-based PA may improve social cognition among individuals with or without social avoidance.

3.
Brain Plast ; 9(1-2): 5-20, 2024.
Article in English | MEDLINE | ID: mdl-39081665

ABSTRACT

BACKGROUND: A single bout of aerobic exercise can provide acute benefits to cognition and emotion in children. Yet, little is known about how acute exercise may impact children's underlying brain networks' resting-state functional connectivity (rsFC). OBJECTIVE: Using a data-driven multivariate pattern analysis, we investigated the effects of a single dose of exercise on acute rsFC changes in 9-to-13-year-olds. METHODS: On separate days in a crossover design, participants (N = 21) completed 20-mins of acute treadmill walking at 65-75% heart rate maximum (exercise condition) and seated reading (control condition), with pre- and post-fMRI scans. Multivariate pattern analysis was used to investigate rsFC change between conditions. RESULTS: Three clusters in the left lateral prefrontal cortex (lPFC) of the frontoparietal network (FPN) had significantly different rsFC after the exercise condition compared to the control condition. Post-hoc analyses revealed that from before to after acute exercise, activity of these FPN clusters became more correlated with bilateral lPFC and the left basal ganglia. Additionally, the left lPFC became more anti-correlated with the precuneus of the default mode network (DMN). An opposite pattern was observed from before to after seated reading. CONCLUSIONS: The findings suggest that a single dose of exercise increases connectivity within the FPN, FPN integration with subcortical regions involved in movement and cognition, and segregation of FPN and DMN. Such patterns, often associated with healthier cognitive and emotional control, may underlie the transient mental benefits observed following acute exercise in youth.

4.
Article in English | MEDLINE | ID: mdl-39031956

ABSTRACT

OBJECTIVES: Traumatic brain injury (TBI) is associated with sleep deficits, but it is not clear why some report sleep disturbances and others do not. The objective of this study was to assess the associations between axonal injury, sleep, and memory in chronic and acute TBI. METHODS: Data were acquired from two independent datasets which included 156 older adult veterans (69.8 years) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with prior moderate-to-severe TBIs and 90 (69.2 years) controls and 374 (39.6 years) from Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) with a recent mild TBI (mTBI) and 87 controls (39.6 years), all who completed an MRI, memory assessment, and sleep questionnaire. RESULTS: Older adults with a prior TBI had a significant association between axonal injury and sleep disturbances [ß = 9.52, 95% CI (4.1, 14.9), p = 0.01]. Axonal injury predicted changes in memory over 1-year in TBI [ß = -8.72, 95% CI (-18, -2.7), p = 0.03]. We externally validated those findings in TRACK-TBI where axonal injury within 2 weeks after mTBI was significantly associated with higher sleep disturbances in the TBI group at 2 weeks[ß = -7.2, 95% CI (-14, -0.50), p = 0.04], 6 months [ß = -16, 95% CI (-24, -7.6), p ≤ 0.01], and 12 months post-injury [ß = -11, 95% CI (-19, -0.85), p = 0.03]. These associations were not significant in controls. INTERPRETATIONS: Axonal injury, specifically to the left anterior internal capsule is robustly associated with sleep disturbances in multiple TBI populations. Early assessment of axonal injury following mTBI could identify those at risk for persistent sleep disturbances following injury.

5.
Sports Med ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769244

ABSTRACT

BACKGROUND: Motor competence and executive functions co-develop throughout childhood and adolescence, and there is emerging evidence that improvements in motor competence may have cognitive benefits in these populations. There is a need to provide a quantitative synthesis of the cross-sectional, longitudinal and experimental studies that have examined the association between motor competence and executive functions in school-aged youth. OBJECTIVES: The primary aim of our systematic review was to synthesise evidence of the association between motor competence and executive functions in school-aged children and adolescents (5-18 years). Our secondary aim was to examine key moderators of this association. METHODS: We searched the PubMed, PsycINFO, Scopus, Ovid MEDLINE, SPORTDiscus and EMBASE databases from inception up to 27 June 2023. We included cross-sectional, longitudinal and experimental studies that assessed the association between motor competence (e.g., general motor competence, locomotor skills, object control skills and stability skills) and executive functions (e.g., general executive functions, inhibition, working memory and cognitive flexibility) in children and adolescents aged 5-18 years. RESULTS: In total, 12,117 records were screened for eligibility, and 44 studies were included. From the 44 included studies, we meta-analysed 37 studies with 251 effect sizes using a structural equation modelling approach in the statistical program R. We found a small positive association (r = 0.18, [95% confidence interval (CI) 0.13-0.22]) between motor competence and executive functions. The positive associations were observed in cross-sectional (r = 0.17, [95% CI 0.13-0.22]), longitudinal (r = 0.15, [95% CI 0.03-0.28]) and experimental studies (r = 0.25, [95% CI 0.01-0.45]). We also found that general motor competence (r = 0.25, [95% CI 0.18-0.33]), locomotor (r = 0.15, [95% CI 0.09-0.21]), object control (r = 0.14, [95% CI 0.08-0.20]) and stability (r = 0.14, [95% CI 0.08-0.20]) skills were associated with executive functions. We did not find any moderating effects for participants' age on the associations between motor competence and executive functions. CONCLUSIONS: Our findings suggest a small-to-moderate positive association between motor competence and executive functions in children and adolescents. The small number of experimental studies included in this review support the assertion that interventions targeting children's motor competence may be a promising strategy to improve their executive functions; however, more research is needed to confirm these findings. Future studies should explore the underlying mechanisms linking motor competence and executive functions as their comprehension may be used to optimise future intervention design and delivery. PROSPERO REGISTRATION: CRD42021285134.

6.
Med Sci Sports Exerc ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778470

ABSTRACT

INTRODUCTION: Children's anxiety is associated with decreased cognitive performance. One well-established behavioral intervention to transiently improve cognitive performance in children is acute aerobic exercise (AAE). Thus far, however, it is unclear whether the benefits of AAE on cognition vary based on individual differences in children's anxiety level. Therefore, we investigated whether trait anxiety levels mediate the effects of AAE on cognitive outcomes in preadolescent children. METHODS: Ninety-five preadolescent children (9-11 years, 41 females) underwent two experimental interventions in a random, crossover, and counterbalanced design: an exercise protocol (20 minutes of walking at 65-75% of HRpeak) and a non-exercise control (seated rest). Behavioral indices of cognitive performance (accuracy, reaction times, response time variability) were assessed before and after each intervention using a modified flanker task. The effects of each intervention on cognitive performance were calculated as pre- to post-intervention differences (effect scores). These scores were first correlated with children's personal characteristics: anxiety (STAIC), sex, age, BMI, IQ, and aerobic fitness. Significant correlations guided subsequent hierarchical regression models, which specifically tested for associations between the effects scores and anxiety levels while controlling for remaining relevant covariates. RESULTS: Regression analysis revealed that anxiety was a significant predictor of the effects that AAE and rest had on cognitive performance. Specifically, higher anxiety scores were associated with greater exercise-induced cognitive benefits (increased accuracy, decreased response time variability; p's < 0.05) and greater rest-induced cognitive impairments (decreased accuracy, increased response time variability; p's < 0.01). CONCLUSIONS: These findings suggest that children reporting higher trait anxiety might experience greater cognitive benefits from a single bout of AAE.

7.
Trends Mol Med ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38719712

ABSTRACT

While the dopaminergic system is important for cognitive processes, it is also sensitive to the influence of physical activity (PA). We summarize current evidence on whether PA-related changes in the human dopaminergic system are associated with alterations in cognitive performance, discuss recent advances, and highlight challenges and opportunities for future research.

8.
Indian J Pediatr ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38573449

ABSTRACT

OBJECTIVES: To examine the relationship between sleep and subcortical brain structures using a shape analysis approach. METHODS: A total of 98 children with overweight/obesity (10.0 ± 1.1 y, 59 boys) were included in the cross-sectional analyses. Sleep behaviors (i.e., wake time, sleep onset time, total time in bed, total sleep time, sleep efficiency, and wakening after sleep onset) were estimated with wrist-worn accelerometers. The shape of the subcortical brain structures was acquired by magnetic resonance imaging. A partial correlation permutation approach was used to examine the relationship between sleep behaviors and brain shapes. RESULTS: Among all the sleep variables studied, only total time in bed was significantly related to pallidum and putamen structure, such that those children who spent more time in bed had greater expansions in the right and left pallidum (211-751 voxels, all p's <0.04) and right putamen (1783 voxels, p = 0.03). CONCLUSIONS: These findings suggest that more time in bed was related to expansions on two subcortical brain regions in children with overweight/obesity.

9.
Psychophysiology ; : e14592, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682486

ABSTRACT

Although the relationships among acute stress, cardiorespiratory fitness (CRF), and cognitive function have been examined, whether CRF is related to behavioral and neuroelectric indices of inhibitory control following acute stress remains unknown. The purpose of the current study was to investigate the combined influence of acute stress and CRF on inhibitory control. Participants, aged 20-30 years, were stratified into the Higher-Fit (n = 31) and the Lower-Fit (n = 32) groups, and completed a Stroop task following the modified Maastricht Acute Stress Test (MAST) in the stress condition and the sham-MAST in the non-stress condition, during which electroencephalography was recorded. Behavioral (i.e., response time and accuracy) and neuroelectric (N2 and P3b components of the event-related potential) outcomes of inhibitory control were obtained. While the Higher-Fit group demonstrated shorter response times and higher accuracy than the Lower-Fit group following both the MAST and the sham-MAST, they also exhibited selective benefits of acute stress on inhibitory control performance (i.e., decreased response times and diminished interference scores). CRF-dependent alterations in neuroelectric indices were also observed, with the Higher-Fit group displaying smaller N2 and greater P3b amplitudes than the Lower-Fit group following the sham-MAST, and increased N2 and attenuated P3b amplitudes following the MAST. Collectively, these findings not only confirm the positive relationship between CRF and inhibitory control but also provide novel insights into the potential influence of CRF on inhibitory control and associated neuroelectric activity following acute stress.

10.
Neurotrauma Rep ; 5(1): 448-461, 2024.
Article in English | MEDLINE | ID: mdl-38666007

ABSTRACT

Reported changes in electroencephalography (EEG)-derived spectral power after mild traumatic brain injury (mTBI) remains inconsistent across existing literature. However, this may be a result of previous analyses depending solely on observing spectral power within traditional canonical frequency bands rather than accounting for the aperiodic activity within the collected neural signal. Therefore, the aim of this study was to test for differences in rhythmic and arrhythmic time series across the brain, and in the cognitively relevant frontoparietal (FP) network, and observe whether those differences were associated with cognitive recovery post-mTBI. Resting-state electroencephalography (rs-EEG) was collected from 88 participants (56 mTBI and 32 age- and sex-matched healthy controls) within 14 days of injury for the mTBI participants. A battery of executive function (EF) tests was collected at the first session with follow-up metrics collected approximately 2 and 4 months after the initial visit. After spectral parameterization, a significant between-group difference in aperiodic-adjusted alpha center peak frequency within the FP network was observed, where a slowing of alpha peak frequency was found in the mTBI group in comparison to the healthy controls. This slowing of week 2 (collected within 2 weeks of injury) aperiodic-adjusted alpha center peak frequency within the FP network was associated with increased EF over time (evaluated using executive composite scores) post-mTBI. These findings suggest alpha center peak frequency within the FP network as a candidate prognostic marker of EF recovery and may inform clinical rehabilitative methods post-mTBI.

11.
Neurobiol Aging ; 137: 94-104, 2024 May.
Article in English | MEDLINE | ID: mdl-38460470

ABSTRACT

The study examined resting state functional connectivity (rs-FC) associated with moderate-to-vigorous physical activity (MV-PA), sedentary time (ST), TV viewing, computer use, and their relationship to cognitive performance in older adults. We used pre-intervention data from 119 participants from the Fit & Active Seniors trial. Multivariate pattern analysis revealed two seeds associated with MV-PA: right superior frontal gyrus (SFG; spanning frontoparietal [FPN] and ventral attention networks [VAN]) and right precentral (PrG) and postcentral gyri (PoG) of the somatosensory network (SN). A positive correlation between the right SFG seed and a cluster spanning default mode (DMN), dorsal attention (DAN), FPN, and visual networks (VIS) was linked to higher fluid intelligence, as was FC between the right PrG/PoG seed and a cluster in VIS. No significant rs-FC patterns associated with ST, TV viewing, or computer use were found. Our findings suggest that greater functional integration within networks implementing top-down control and within those supporting visuospatial abilities, paired with segregation between networks critical and those not critical to top-down control, may help promote cognitive reserve in more physically active seniors.


Subject(s)
Connectome , Humans , Aged , Individuality , Prefrontal Cortex , Magnetic Resonance Imaging , Brain/diagnostic imaging
12.
Prog Brain Res ; 283: 123-165, 2024.
Article in English | MEDLINE | ID: mdl-38538186

ABSTRACT

The aim of the present study was to examine the associations of adiposity and fitness on the preadolescent brain's response to acute exercise. In a sample of 58 children (ages 8-10; 19 females), demographic measures of age, sex, IQ, puberty, and socioeconomic status were considered. Children participated in a randomized crossover study, whereby they completed two different interventions; seated rest or treadmill walking, counterbalanced across participants. Associations between adiposity measures (standardized body mass index [BMI-Z], whole body percent fat [%Fat], visceral adipose tissue [VAT]), cardiorespiratory fitness measures (VO2max and Fat-Free VO2) were assessed on self-reported measures of mental wellbeing, and cognitive performance (response accuracy, reaction time) and neuroelectric (P3 amplitude and latency) indices of a Go/NoGo task following both exercise and rest interventions. Higher adiposity (whole-body percent fat, BMI-Z) was associated with higher trait anxiety (P's≤0.05) and disordered eating (P's≤0.05) scores. Higher fitness (VO2max) was associated with lower childhood depression scores (P=0.02). Regression analyses yielded specific post-exercise neurocognitive associations with adiposity-related (VAT, BMI-Z), and fitness-related (FF-VO2) outcomes, after controlling for post-rest neurocognitive outcomes. VAT was positively associated with post-exercise P3 ERP Latency for the Go task (P≤0.001); BMI-Z was negatively associated with P3 ERP amplitudes for the Go task (P's≤0.005); FF-VO2 was negatively associated with P3 ERP latency for the Go/NoGo task (P's≤0.05), and positively associated with NoGo task accuracy (P≤0.001). Overall, adiposity and fat-free fitness measures yield sensitive and differential associations with neurocognitive performance after exercise and after rest interventions.


Subject(s)
Adiposity , Obesity , Child , Female , Humans , Adiposity/physiology , Body Mass Index , Cross-Over Studies , Exercise/physiology , Obesity/psychology , Male
13.
BMC Pediatr ; 24(1): 174, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38461348

ABSTRACT

BACKGROUND: Previous research has suggested that school-based physical activity (PA) interventions may have a positive impact on academic performance. However, existing literature on school-based interventions encompasses various forms of PA, spanning from vigorous intensity PA outside the academic classes to light intensity PA and movement integrated into academic learning tasks, and results on academic performance are inconclusive. ACTIVE SCHOOL will implement two different PA interventions for one school year and assess the effects on the pupils' academic performance, with math performance as the primary outcome. METHODS/DESIGN: The ACTIVE SCHOOL project consists of two phases: 1) Development phase and 2) Randomized Controlled Trial (RCT). In phase one, two interventions were developed in collaboration with school staff. The two interventions were tested in an 8-weeks feasibility study. In phase two, a RCT-study with three arms will be conducted in 9-10-year-old children for one school year. The RCT-study will be carried out in two intervention rounds during the school years 2023/2024 and 2024/2025. Schools will be randomized to one of two interventions or control;1) Run, Jump & Fun intervention (4 × 30 min/week of moderate-to-vigorous physical activity; 2) Move & Learn intervention (4 × 30 min/week focusing on embodied learning in math and Danish lessons); or 3) a control condition, consisting of normal teaching practices. Outcome measures include academic performance, PA level, cognitive functions, cardiorespiratory fitness, anthropometry, well-being and school motivation (collected before, during and after the intervention period). A process evaluation will be conducted to assess implementation. DISCUSSION: The ACTIVE SCHOOL study will expand knowledge regarding the impact of PA on academic performance. The study will have the potential to significantly contribute to future research, as well as the scientific and educational debate on the best way to implement PA to support education and learning. TRIAL REGISTRATION: The study was registered on the 25th of October 2022 in ClinicalTrials.gov, NCT05602948.


Subject(s)
Academic Performance , Exercise , Child , Humans , Exercise/psychology , Schools , Learning , Cognition , Health Promotion/methods , School Health Services , Randomized Controlled Trials as Topic
14.
Front Psychol ; 15: 1385888, 2024.
Article in English | MEDLINE | ID: mdl-38533214
15.
Trends Cogn Sci ; 28(4): 369-382, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431428

ABSTRACT

Higher levels of physical activity are known to benefit aspects of brain health across the lifespan. However, the role of sedentary behavior (SB) is less well understood. In this review we summarize and discuss evidence on the role of SB on brain health (including cognitive performance, structural or functional brain measures, and dementia risk) for different age groups, critically compare assessment approaches to capture SB, and offer insights into emerging opportunities to assess SB via digital technologies. Across the lifespan, specific characteristics of SB (particularly whether they are cognitively active or cognitively passive) potentially act as moderators influencing the associations between SB and specific brain health outcomes. We outline challenges and opportunities for future research aiming to provide more robust empirical evidence on these observations.


Subject(s)
Longevity , Sedentary Behavior , Humans , Exercise , Brain
16.
Int J Clin Health Psychol ; 24(2): 100447, 2024.
Article in English | MEDLINE | ID: mdl-38371396

ABSTRACT

Background: Major Depressive Disorder (MDD) is a highly prevalent psychiatric disorder that impairs the cognitive function of individuals. Aerobic exercise stands out as a promising non-pharmacological intervention for enhancing cognitive function and promoting brain health.While positive impacts of aerobic exercise on executive function in adults with depression have been documented, a comprehensive understanding of its benefits on overall cognitive function, including memory, attention, and processing speed, along with key moderating factors in adults with MDD, remains unexplored. The purpose of the systematic review and meta-analysis was to investigate the effects of aerobic exercise on overall cognitive function in adults with MDD, and to explore whether cognitive sub-domains, aerobic exercise characteristics, and study and sample variables modify the effects of aerobic exercise on cognition. Methods: Six English electronic databases (Embase, Cochrane Central, Scopus, APA PsycInfo, PubMed, Web of Science) were searched from inception to 2 April 2023. Randomized trials, including adults aged 18 years or above with a diagnosis of clinical depression, of the effects of aerobic exercise on cognitive function in adults with MDD compared to non-aerobic exercise groups were included. A three-level meta-analysis was conducted utilizing a random-effects model in R. The quality of the studies was evaluated using the Physiotherapy Evidence Database (PEDro) scale. The PROSPERO registration number is CRD42022367350. Results: Twelve randomized trials including 945 adults with MDD were included. Results indicated that aerobic exercise significantly improved overall cognitive function (g = 0.21; 95 % confidence intervals [CI] = 0.07, 0.34), and the sub-domains of memory (g = 0.25; 95 % CI = 0.06, 0.44) and executive function (g = 0.12; 95 % CI = 0.04, 0.20). Significant benefits in cognitive function were found from moderate-to-vigorous (mixed) intensity (g = 0.19; 95 % CI = 0.02, 0.37), aerobic exercise conducted 3 times per week (g = 0.23; 95 % CI = 0.10, 0.38), in sessions < 45 min (g = 0.59; 95 % CI = 0.28, 0.90), and 45-60 min (g = 0.16; 95 % CI = 0.07, 0.26), in aerobic exercise intervention ≤ 12 weeks (g = 0. 26; 95 % CI = 0.08, 0.44). Limitations: This review only included peer-reviewed English-language studies, which may lead to a language bias. The results of the Egger's test suggested a potential publication bias. Conclusions: Aerobic exercise is efficacious in improving overall cognitive function and the sub-domains of memory and executive function in adults with major depressive disorder.

17.
Psychophysiology ; 61(4): e14469, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37905673

ABSTRACT

Previous research has indicated that cardiorespiratory fitness (CRF) is structurally and functionally neuroprotective in older adults. However, questions remain regarding the mechanistic role of CRF on cognitive and brain health. The purposes of this study were to investigate if higher pre-intervention CRF was associated with greater change in functional brain connectivity during an exercise intervention and to determine if the magnitude of change in connectivity was related to better post-intervention cognitive performance. The sample included low-active older adults (n = 139) who completed a 6-month exercise intervention and underwent neuropsychological testing, functional neuroimaging, and CRF testing before and after the intervention. A data-driven multi-voxel pattern analysis was performed on resting-state MRI scans to determine changes in whole-brain patterns of connectivity from pre- to post-intervention as a function of pre-intervention CRF. Results revealed a positive correlation between pre-intervention CRF and changes in functional connectivity in the precentral gyrus. Using the precentral gyrus as a seed, analyses indicated that CRF-related connectivity changes within the precentral gyrus were derived from increased correlation strength within clusters located in the Dorsal Attention Network (DAN) and increased anti-correlation strength within clusters located in the Default Mode Network (DMN). Exploratory analysis demonstrated that connectivity change between the precentral gyrus seed and DMN clusters were associated with improved post-intervention performance on perceptual speed tasks. These findings suggest that in a sample of low-active and mostly lower-fit older adults, even subtle individual differences in CRF may influence the relationship between functional connectivity and aspects of cognition following a 6-month exercise intervention.


Subject(s)
Cognition , Default Mode Network , Humans , Aged , Brain , Magnetic Resonance Imaging , Exercise Therapy , Brain Mapping
18.
Scand J Med Sci Sports ; 34(1): e14486, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691352

ABSTRACT

OBJECTIVE: To investigate whether a 20-week aerobic and resistance exercise program induces changes in brain current density underlying working memory and inhibitory control in children with overweight/obesity. METHODS: A total of 67 children (10.00 ± 1.10 years) were randomized into an exercise or control group. Electroencephalography (EEG)-based current density (µA/mm2 ) was estimated using standardized low-resolution brain electromagnetic tomography (sLORETA) during a working memory task (Delayed non-matched-to-sample task, DNMS) and inhibitory control task (Modified flanker task, MFT). In DNMS, participants had to memorize four stimuli (Pokemons) and then select between two of them, one of which had not been previously shown. In MFT, participants had to indicate whether the centered cow (i.e., target) of five faced the right or left. RESULTS: The exercise group had significantly greater increases in brain activation in comparison with the control group during the encoding phase of DNMS, particularly during retention of second stimuli in temporal and frontal areas (peak t = from 3.4 to 3.8, cluster size [k] = from 11 to 39), during the retention of the third stimuli in frontal areas (peak t = from 3.7 to 3.9, k = from 15 to 26), and during the retention of the fourth stimuli in temporal and occipital areas (peak t = from 2.7 to 4.3, k = from 13 to 101). In MFT, the exercise group presented a lower current density change in the middle frontal gyrus (peak t = -4.1, k = 5). No significant change was observed between groups for behavioral performance (p ≥ 0.05). CONCLUSION: A 20-week exercise program modulates brain activity which might provide a positive influence on working memory and inhibitory control in children with overweight/obesity.


Subject(s)
Executive Function , Overweight , Child , Humans , Executive Function/physiology , Overweight/therapy , Magnetic Resonance Imaging , Obesity/therapy , Exercise Therapy
19.
Psychol Sport Exerc ; 70: 102514, 2024 01.
Article in English | MEDLINE | ID: mdl-37683338

ABSTRACT

Research in children points to aerobic fitness as a source of individual differences in academic achievement. By examining the indirect effects of executive functions (EF) and intelligence on the relationship between aerobic fitness and academic achievement, the present study provides novel insight about the cognitive mechanisms underlying this relationship. 218 children (8-10 years) completed the following assessments: (i) a VO2max test to assess aerobic fitness; (ii) four tasks tapping components of EF (i.e., inhibition and cognitive flexibility); (iii) sub-tests of the Kaufman Brief Intelligence Test to assess fluid and crystallized intelligence; and (iv) sub-tests of arithmetic, spelling, and reading achievement (WRAT 3rd edition). Structural equation modeling (SEM) was conducted to examine the indirect role of EF and intelligence on the relationship between aerobic fitness and sub-domains of academic achievement. Covariate analyses included age, pubertal timing, and socio-economic status. Preliminary analysis via linear regression showed a direct effect of aerobic fitness on arithmetic achievement, whereas no effect was observed on spelling and reading achievement. Importantly, multiple mediation SEM revealed the direct effect of aerobic fitness on arithmetic achievement disappeared after accounting for the indirect effects of EF, whereas intelligence did not contribute significantly on this complex mediation process. Moreover, among EF components, cognitive flexibility, was the main driver of the relationship between aerobic fitness and arithmetic achievement. Unpacking which components of EF and intelligence affect the link between aerobic fitness and academic achievement, holds the promise of better understanding the heterogeneity still present in the literature.


Subject(s)
Academic Success , Executive Function , Child , Humans , Executive Function/physiology , Physical Fitness/physiology , Educational Status , Intelligence
20.
Article in English | IBECS | ID: ibc-226370

ABSTRACT

It is well-documented in the literature that high levels of regular physical activity (PA), low levels of sedentary behavior (SB), and high levels of cardiorespiratory fitness (CRF) are associated with superior cognitive functioning, especially with regard to older populations. However, concerning other age groups (e.g., preschoolers) the available evidence documenting such a positive relationship is relatively scarce. Thus, this study aimed to investigate the association of time spent in different PA intensity zones and CRF with executive functions (EFs) in preschool-age children. To this end, preschoolers (n = 127) aged 3 to 6 years were recruited from 9 kindergarten classes in 2 districts of Shenzhen, China. The amount and the intensity of PA were assessed via accelerometry, and the CRF level was quantified by the 20-meter shuttle run test. EFs including inhibitory control and working memory were assessed using the one-on-one iPad-based Early Year Toolbox. Results suggested that children who had a higher CRF level (“impulse control” scores: β = 0.34, p < .001; “Go” accuracy: β = 0.31, p < .001; “No-Go” accuracy: β =0.28, < .001) and spentmore time in moderate-to-vigorous physical activity (MVPA) (“impulse control” scores: β = 0.50, p < .001; No-Go” accuracy: β = 0.52, p < .001) had higher scores on inhibitory control tasks, and those who had a higher CRF level had higher scores on a working memory task (β = 0.24, p < .05). The findings are discussed in light of the positive roles of MVPA and CRF for promoting EFs, but also consider the disproportionate association of PA and CRF with working memory relative to inhibition. (AU)


Subject(s)
Humans , Male , Female , Child, Preschool , Motor Activity , Physical Fitness , Cardiorespiratory Fitness , Sedentary Behavior , Executive Function , Cross-Sectional Studies , China , Schools, Nursery
SELECTION OF CITATIONS
SEARCH DETAIL