Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Opt Express ; 31(20): 33500-33517, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859131

ABSTRACT

Holographic optical coherence tomography (OCT) is a powerful imaging technique, but its ability to reveal low-reflectivity features is limited. In this study, we performed holographic OCT by incoherently averaging volumes with changing diffuse illumination of numerical aperture (NA) equal to the detection NA. While the reduction of speckle from singly scattered light is only modest, we discovered that speckle from multiply scattered light can be arbitrarily reduced, resulting in substantial improvements in image quality. This technique also offers the advantage of suppressing noises arising from spatial coherence, and can be implemented with a partially spatially incoherent light source for further mitigation of multiple scattering. Finally, we show that although holographic reconstruction capabilities are increasingly lost with decreasing spatial coherence, they can be retained over an axial range sufficient to standard OCT applications.

2.
Front Med (Lausanne) ; 9: 885187, 2022.
Article in English | MEDLINE | ID: mdl-35721092

ABSTRACT

Non-invasive spatially resolved functional imaging in the human retina has recently attracted considerable attention. Particularly functional imaging of bipolar and ganglion cells could aid in studying neuronal activity in humans, including an investigation of processes of the central nervous system. Recently, we imaged the activity of the inner neuronal layers by measuring nanometer-size changes of the cells within the inner plexiform layer (IPL) using phase-sensitive optical coherence tomography (OCT). In the IPL, there are connections between the neuronal cells that are dedicated to the processing of different aspects of the visual information, such as edges in the image or temporal changes. Still, so far, it was not possible to assign functional changes to single cells or cell classes in living humans, which is essential for studying the vision process. One characteristic of signal processing in the IPL is that different aspects of the visual impression are only processed in specific sub-layers (strata). Here, we present an investigation of these functional signals for three different sub-layers in the IPL with the aim to separate different properties of the visual signal processing. Whereas the inner depth-layer, closest to the ganglion cells, exhibits an increase in the optical path length, the outer depth-layer, closest to the bipolar cell layer, exhibits a decrease in the optical path length. Additionally, we found that the central depth is sensitive to temporal changes, showing a maximum response at a stimulation frequency of around 12.5 Hz. The results demonstrate that the signals from different cell types can be distinguished by phase-sensitive OCT.

3.
Opt Lett ; 47(5): 1198-1201, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230326

ABSTRACT

Full-field swept-source optical coherence tomography (FF-SS-OCT) and laser Doppler holography (LDH) are two holographic imaging techniques presenting unique capabilities for ophthalmology. We report on interlaced FF-SS-OCT and LDH imaging with a single instrument. Effectively, retinal blood flow and pulsation could be quasi-simultaneously monitored. This instrument holds potential for a wide scope of ophthalmic applications.


Subject(s)
Holography , Tomography, Optical Coherence , Angiography , Lasers , Retina/diagnostic imaging , Tomography, Optical Coherence/methods
4.
Light Sci Appl ; 10(1): 21, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33479194

ABSTRACT

Optical coherence tomography (OCT) has become one of the most important techniques in ophthalmic diagnostics, as it is the only way to three-dimensionally visualize morphological changes in the layered structure of the retina at a high resolution. In addition, OCT is applied for countless medical and technical purposes. Recent developments pave the way for small-footprint OCT systems at significantly reduced costs, thereby extending possible use cases. Now, it appears increasingly likely that, in the near future, OCT will find its way into many more industrial and medical applications, including disease monitoring at home.

5.
J Biophotonics ; 13(10): e202000112, 2020 10.
Article in English | MEDLINE | ID: mdl-32639647

ABSTRACT

A method for numerical estimation and correction of aberrations of the eye in fundus imaging with optical coherence tomography (OCT) is presented. Aberrations are determined statistically by using the estimate based on likelihood function maximization. The method can be considered as an extension of the phase gradient autofocusing algorithm in synthetic aperture radar imaging to 2D optical aberration correction. The efficacy of the proposed method has been demonstrated in OCT fundus imaging with 6λ aberrations. After correction, single photoreceptors were resolved. It is also shown that wave front distortions with high spatial frequencies can be determined and corrected.


Subject(s)
Algorithms , Tomography, Optical Coherence , Fundus Oculi , Likelihood Functions
6.
Opt Lett ; 44(23): 5671-5674, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31774751

ABSTRACT

Functional retinal imaging, especially of neuronal activity non-invasively in humans, is of tremendous interest. Although the activation of photoreceptor cells (PRCs) could be detected in humans, imaging the function of other retinal neurons had been so far hardly possible. Here, using phase-sensitive full-field swept-source optical coherence tomography (FF-SS-OCT), we show simultaneous imaging of the activation in the photoreceptor and ganglion cell layer/inner plexiform layer (GCL/IPL). The signals from the GCL/IPL are 10-fold smaller than those from the PRC and were detectable only using algorithms for suppression of motion artifacts and pulsatile blood flow in the retinal vessels. FF-SS-OCT with improved phase evaluation algorithms, therefore, allowed us to map functional connections between PRC and GCL/IPL, confirming previous ex vivo results. The demonstrated functional imaging of retinal neuronal layers can be a valuable tool in diagnostics and basic research.


Subject(s)
Neurons/cytology , Photoreceptor Cells, Vertebrate/cytology , Tomography, Optical Coherence , Cell Survival , Humans , Time Factors
7.
Opt Lett ; 44(15): 3905-3908, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31368998

ABSTRACT

Computational adaptive optics (CAO) is emerging as a viable alternative to hardware-based adaptive optics-in particular when applied to optical coherence tomography of the retina. For this technique, algorithms are required that detect wavefront errors precisely and quickly. Here we propose an extension of the frequently used subaperture image correlation. By applying this algorithm iteratively and, more importantly, comparing each subaperture not to the central subaperture but to several randomly selected apertures, we improved aberration correction. Since these modifications only slightly increase the run time of the correction, we believe this method can become the algorithm of choice for many CAO applications.

8.
Sci Rep ; 9(1): 11748, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409819

ABSTRACT

Phase-sensitive coherent imaging exploits changes in the phases of backscattered light to observe tiny alterations of scattering structures or variations of the refractive index. But moving scatterers or a fluctuating refractive index decorrelate the phases and speckle patterns in the images. It is generally believed that once the speckle pattern has changed, the phases are scrambled and any meaningful phase difference to the original pattern is removed. As a consequence, diffusion and tissue motion that cannot be resolved, prevent phase-sensitive imaging of biological specimens. Here, we show that a phase comparison between decorrelated speckle patterns is still possible by utilizing a series of images acquired during decorrelation. The resulting evaluation scheme is mathematically equivalent to methods for astronomic imaging through the turbulent sky by speckle interferometry. We thus adopt the idea of speckle interferometry to phase-sensitive imaging in biological tissues and demonstrate its efficacy for simulated data and imaging of photoreceptor activity with phase-sensitive optical coherence tomography. We believe the described methods can be applied to many imaging modalities that use phase values for interferometry.

9.
Opt Lett ; 44(6): 1315-1318, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30874639

ABSTRACT

In optical coherence tomography (OCT), lateral motion is determined either by speckle tracking or by multi-aperture Doppler OCT. Here we show that both methods may provide incorrect results because, outside the focal plane, non-uniform axial motion is misinterpreted as lateral motion. First, we demonstrate the existence of this artifact by means of a simulation for speckle tracking. Then the physical origin of the artifact and its mathematical relation to defocus and axial motion are explained. It is shown that speckle tracking and multi-aperture Doppler OCT are equally affected by the artifact, which has a considerable effect, even for a defocus of less than one Rayleigh length.

10.
Opt Express ; 26(15): 18803-18816, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30114142

ABSTRACT

Doppler optical coherence tomography (OCT) quantifies axial motion with high precision, whereas lateral motion cannot be detected by a mere evaluation of phase changes. This problem was solved by the introduction of three-beam Doppler OCT, which, however, entails a high experimental effort. Here, we present the numerical analogue to this experimental approach. Phase-stable complex-valued OCT datasets, recorded with full-field swept-source OCT, are filtered in the Fourier domain to limit imaging to different computational subapertures. These are used to calculate all three components of the motion vector with interferometric precision. As known from conventional Doppler OCT for axial motion only, the achievable accuracy exceeds the actual imaging resolution by orders of magnitude in all three dimensions. The feasibility of this method is first demonstrated by quantifying micro-rotation of a scattering sample. Subsequently, a potential application is explored by recording the 3D motion vector field of tissue during laser photocoagulation in ex-vivo porcine retina.

11.
Opt Lett ; 43(17): 4224-4227, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30160757

ABSTRACT

Aberration-corrected imaging of human photoreceptor cells, whether hardware or software based, presently requires a complex and expensive setup. Here we use a simple and inexpensive off-axis full-field time-domain optical coherence tomography (OCT) approach to acquire volumetric data of an in vivo human retina. Full volumetric data are recorded in 1.3 s. After computationally correcting for aberrations, single photoreceptor cells were visualized. In addition, the numerical correction of ametropia is demonstrated. Our implementation of full-field optical coherence tomography combines a low technical complexity with the possibility for computational image correction.


Subject(s)
Image Processing, Computer-Assisted , Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Algorithms , Costs and Cost Analysis , Humans , Time Factors , Tomography, Optical Coherence/economics
12.
J Biophotonics ; 11(2)2018 02.
Article in English | MEDLINE | ID: mdl-29219240

ABSTRACT

This paper comments on the article "Retinal pulse wave velocity measurement using spectral-domain optical coherence tomography" by Qian Li et al. The authors propose a method to determine the pulse wave velocity in retinal arteries and veins. This method should enable a noninvasive determination of biomechanical properties of the vessel network, particularly the elasticity of the vessel walls. Although the observations the authors made might seem reasonable at first glance, they are in fact highly surprising and contradictory to theoretical predictions and previously published results.


Subject(s)
Retinal Artery , Tomography, Optical Coherence , Pulse Wave Analysis , Retina , Veins
13.
Opt Express ; 25(22): 27770-27784, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-29092247

ABSTRACT

In numerous applications, Fourier-domain optical coherence tomography (FD-OCT) suffers from a limited imaging depth due to signal roll-off, a limited focal range, and autocorrelation noise. Here, we propose a parallel full-field FD-OCT imaging method that uses a swept laser source and an area camera in combination with an off-axis reference, which is incident on the camera at a small angle. As in digital off-axis holography, this angle separates autocorrelation signals and the complex conjugated mirror image from the actual signal in Fourier space. We demonstrate that by reconstructing the signal term only, this approach enables full-range imaging, i.e., it increases the imaging depth by a factor of two, and removes autocorrelation artifacts. The previously demonstrated techniques of inverse scattering and holoscopy can then numerically extend the focal range without loss of lateral resolution or imaging sensitivity. The resulting, significantly enhanced measurement depth is demonstrated by imaging a porcine eye over its entire depth, including cornea, lens, and retina. Finally, the feasibility of in vivo measurements is demonstrated by imaging the living human retina.

14.
Biomed Opt Express ; 8(3): 1499-1511, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28663845

ABSTRACT

Full-field swept-source optical coherence tomography (FF-SS-OCT) was recently shown to allow new and exciting applications for imaging the human eye that were previously not possible using current scanning OCT systems. However, especially when using cameras that do not acquire data with hundreds of kHz frame rate, uncorrected phase errors due to axial motion of the eye lead to a drastic loss in image quality of the reconstructed volumes. Here we first give a short overview of recent advances in techniques and applications of parallelized OCT and finally present an iterative and statistical algorithm that estimates and corrects motion-induced phase errors in the FF-SS-OCT data. The presented algorithm is in many aspects adopted from the phase gradient autofocus (PGA) method, which is frequently used in synthetic aperture radar (SAR). Following this approach, the available phase errors can be estimated based on the image information that remains in the data, and no parametrization with few degrees of freedom is required. Consequently, the algorithm is capable of compensating even strong motion artifacts. Efficacy of the algorithm was tested on simulated data with motion containing varying frequency components. We show that even in strongly blurred data, the actual image information remains intact, and the algorithm can identify the phase error and correct it. Furthermore, we use the algorithm to compensate real phase error in FF-SS-OCT imaging of the human retina. Acquisition rates can be reduced by a factor of three (from 60 to 20 kHz frame rate) with an image quality that is even higher compared to uncorrected volumes recorded at the maximum acquisition rate. The presented algorithm for axial motion correction decreases the high requirements on the camera frame rate and thus brings FF-SS-OCT closer to clinical applications.

15.
Opt Lett ; 41(21): 4987-4990, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27805666

ABSTRACT

With a simple setup, mainly composed of a low coherence light source and a camera, full-field optical coherence tomography (FF-OCT) allows volumetric tissue imaging. However, fringe washout constrains its use in retinal imaging. Here, we present a novel motion-insensitive approach to FF-OCT, which introduces path-length differences between the reference and the sample light in neighboring pixels using an off-axis reference beam. The temporal carrier frequency in scanned time-domain OCT is replaced by a spatial carrier frequency. Volumetric in-vivo FF-OCT measurements of the human retina were acquired in only 1.3 s, comparable to the acquisition times of current clinically used OCT devices.


Subject(s)
Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Humans
16.
Sci Rep ; 6: 35209, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27762314

ABSTRACT

Certain topics in research and advancements in medical diagnostics may benefit from improved temporal and spatial resolution during non-invasive optical imaging of living tissue. However, so far no imaging technique can generate entirely diffraction-limited tomographic volumes with a single data acquisition, if the target moves or changes rapidly, such as the human retina. Additionally, the presence of aberrations may represent further difficulties. We show that a simple interferometric setup-based on parallelized optical coherence tomography-acquires volumetric data with 10 billion voxels per second, exceeding previous imaging speeds by an order of magnitude. This allows us to computationally obtain and correct defocus and aberrations resulting in entirely diffraction-limited volumes. As demonstration, we imaged living human retina with clearly visible nerve fiber layer, small capillary networks, and photoreceptor cells. Furthermore, the technique can also obtain phase-sensitive volumes of other scattering structures at unprecedented acquisition speeds.


Subject(s)
Image Processing, Computer-Assisted/statistics & numerical data , Imaging, Three-Dimensional/instrumentation , Interferometry/methods , Optical Imaging/instrumentation , Retina/ultrastructure , Tomography, Optical Coherence/methods , Capillaries/anatomy & histology , Capillaries/ultrastructure , Healthy Volunteers , Humans , Imaging, Three-Dimensional/methods , Interferometry/instrumentation , Nerve Fibers/ultrastructure , Optical Imaging/methods , Retina/anatomy & histology , Time Factors , Tomography, Optical Coherence/instrumentation
17.
Proc Natl Acad Sci U S A ; 113(46): 13138-13143, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27729536

ABSTRACT

Noninvasive functional imaging of molecular and cellular processes of vision may have immense impact on research and clinical diagnostics. Although suitable intrinsic optical signals (IOSs) have been observed ex vivo and in immobilized animals in vivo, detecting IOSs of photoreceptor activity in living humans was cumbersome and time consuming. Here, we observed clear spatially and temporally resolved changes in the optical path length of the photoreceptor outer segment as a response to an optical stimulus in the living human eye. To witness these changes, we evaluated phase data obtained with a parallelized and computationally aberration-corrected optical coherence tomography system. The noninvasive detection of optical path length changes shows neuronal photoreceptor activity of single cones in living human retina, and therefore, it may provide diagnostic options in ophthalmology and neurology and could provide insights into visual phototransduction in humans.


Subject(s)
Retina/diagnostic imaging , Retina/physiology , Retinal Cone Photoreceptor Cells/physiology , Humans , Optical Phenomena , Photic Stimulation , Tomography, Optical Coherence , Young Adult
18.
Opt Lett ; 40(20): 4771-4, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469616

ABSTRACT

We demonstrate a new noninvasive method to assess biomechanical properties of the retinal vascular system. Phase-sensitive full-field swept-source optical coherence tomography (PhS-FF-SS-OCT) is used to investigate retinal vascular dynamics at unprecedented temporal resolution. The motion of retinal tissue that is induced by expansion of the vessels therein is measured with an accuracy of about 10 nm. The pulse shapes of arterial and venous pulsations, their temporal delays, as well as the frequency-dependent pulse propagation through the capillary bed, are determined. For the first time, imaging speed and motion sensitivity are sufficient for a direct measurement of pulse waves propagating with more than 600 mm/s in retinal vessels of a healthy young subject.


Subject(s)
Retinal Artery/physiology , Retinal Vein/physiology , Tomography, Optical Coherence/methods , Humans , Movement
19.
Opt Express ; 20(19): 21247-63, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037248

ABSTRACT

Holoscopy is a tomographic imaging technique that combines digital holography and Fourier-domain optical coherence tomography (OCT) to gain tomograms with diffraction limited resolution and uniform sensitivity over several Rayleigh lengths. The lateral image information is calculated from the spatial interference pattern formed by light scattered from the sample and a reference beam. The depth information is obtained from the spectral dependence of the recorded digital holograms. Numerous digital holograms are acquired at different wavelengths and then reconstructed for a common plane in the sample. Afterwards standard Fourier-domain OCT signal processing achieves depth discrimination. Here we describe and demonstrate an optimized data reconstruction algorithm for holoscopy which is related to the inverse scattering reconstruction of wavelength-scanned full-field optical coherence tomography data. Instead of calculating a regularized pseudoinverse of the forward operator, the recorded optical fields are propagated back into the sample volume. In one processing step the high frequency components of the scattering potential are reconstructed on a non-equidistant grid in three-dimensional spatial frequency space. A Fourier transform yields an OCT equivalent image of the object structure. In contrast to the original holoscopy reconstruction with backpropagation and Fourier transform with respect to the wavenumber, the required processing time does neither depend on the confocal parameter nor on the depth of the volume. For an imaging NA of 0.14, the processing time was decreased by a factor of 15, at higher NA the gain in reconstruction speed may reach two orders of magnitude.

20.
Opt Express ; 20(6): 6761-76, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418560

ABSTRACT

Swept-source optical coherence tomography (SS-OCT) is sensitive to sample motion during the wavelength sweep, which leads to image blurring and image artifacts. In line-field and full-field SS-OCT parallelization is achieved by using a line or area detector, respectively. Thus, approximately 1000 lines or images at different wavenumbers are acquired. The sweep duration is identically with the acquisition time of a complete B-scan or volume, rendering parallel SS-OCT more sensitive to motion artifacts than scanning OCT. The effect of axial motion on the measured spectra is similar to the effect of non-balanced group velocity dispersion (GVD) in the interferometer arms. It causes the apparent optical path lengths in the sample arm to vary with the wavenumber. Here we propose the cross-correlation of sub-bandwidth reconstructions (CCSBR) as a new algorithm that is capable of detecting and correcting the artifacts induced by axial motion in line-field or full-field SS-OCT as well as GVD mismatch in any Fourier-domain OCT (FD-OCT) setup. By cross-correlating images which were reconstructed from a limited spectral range of the interference signal, a phase error is determined which is used to correct the spectral modulation prior to the calculation of the A-scans. Performance of the algorithm is demonstrated on in vivo full-field SS-OCT images of skin and scanning FD-OCT of skin and retina.


Subject(s)
Algorithms , Artifacts , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Tomography, Optical Coherence/methods , Fourier Analysis , Motion , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...