Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 1): 29-36, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33439153

ABSTRACT

In 2003, a fully automated protein crystallization and monitoring system (PXS) was developed to support the structural genomics projects that were initiated in the early 2000s. In PXS, crystallization plates were automatically set up using the vapor-diffusion method, transferred to incubators and automatically observed according to a pre-set schedule. The captured images of each crystallization drop could be monitored through the internet using a web browser. While the screening throughput of PXS was very high, the demands of users have gradually changed over the ensuing years. To study difficult proteins, it has become important to screen crystallization conditions using small amounts of proteins. Moreover, membrane proteins have become one of the main targets for X-ray crystallography. Therefore, to meet the evolving demands of users, PXS was upgraded to PXS2. In PXS2, the minimum volume of the dispenser is reduced to 0.1 µl to minimize the amount of sample, and the resolution of the captured images is increased to five million pixels in order to observe small crystallization drops in detail. In addition to the 20°C incubators, a 4°C incubator was installed in PXS2 because crystallization results may vary with temperature. To support membrane-protein crystallization, PXS2 includes a procedure for the bicelle method. In addition, the system supports a lipidic cubic phase (LCP) method that uses a film sandwich plate and that was specifically designed for PXS2. These improvements expand the applicability of PXS2, reducing the bottleneck of X-ray protein crystallography.


Subject(s)
Crystallization/instrumentation , Membrane Proteins/chemistry , Automation, Laboratory , Crystallization/methods , Equipment Design , Robotics , Temperature , Video Recording/instrumentation
2.
J Synchrotron Radiat ; 20(Pt 6): 890-3, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121334

ABSTRACT

Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable.


Subject(s)
Automation , Proteins/chemistry , Calibration , High-Throughput Screening Assays
3.
J Synchrotron Radiat ; 20(Pt 6): 938-42, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121344

ABSTRACT

BL-17A is a macromolecular crystallography beamline dedicated to diffraction experiments conducted using micro-crystals and structure determination studies using a lower energy X-ray beam. In these experiments, highly accurate diffraction intensity measurements are definitively important. Since this beamline was constructed, the beamline apparatus has been improved in several ways to enable the collection of accurate diffraction data. The stability of the beam intensities at the sample position was recently improved by modifying the monochromator. The diffractometer has also been improved. A new detector table was installed to prevent distortions in the diffractometer's base during the repositioning of the diffractometer detector. A new pinhole system and an on-axis viewing system were installed to improve the X-ray beam profile at the sample position and the centering of tiny crystal samples.

4.
J Synchrotron Radiat ; 20(Pt 6): 838-42, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24121324

ABSTRACT

The macromolecular crystallography (MX) beamline AR-NW12A is evolving from its original design of high-throughput crystallography to a multi-purpose end-station. Among the various options to be implemented, great efforts were made in making available high-pressure MX (HPMX) at the beamline. High-pressure molecular biophysics is a developing field that attracts the interest of a constantly growing scientific community. A plethora of activities can benefit from high pressure, and investigations have been performed on its applicability to study multimeric complex assemblies, compressibility of proteins and their crystals, macromolecules originating from extremophiles, or even the trapping of higher-energy conformers for molecules of biological interest. Recent studies using HPMX showed structural hydrostatic-pressure-induced changes in proteins. The conformational modifications could explain the enzymatic mechanism differences between proteins of the same family, living at different environmental pressures, as well as the initial steps in the pressure-denaturation process that have been attributed to water penetration into the protein interior. To facilitate further HPMX, while allowing access to various individualized set-ups and experiments, the AR-NW12A sample environment has been revisited. Altogether, the newly added implementations will bring a fresh breath of life to AR-NW12A and allow the MX community to experiment in a larger set of fields related to structural biology.

5.
J Synchrotron Radiat ; 18(1): 11-5, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21169682

ABSTRACT

A direct outcome of the exponential growth of macromolecular crystallography is the continuously increasing demand for synchrotron beam time, both from academic and industrial users. As more and more projects entail screening a profusion of sample crystals, fully automated procedures at every level of the experiments are being implemented at all synchrotron facilities. One of the major obstacles to achieving such automation lies in the sample recognition and centring in the X-ray beam. The capacity of UV light to specifically react with aromatic residues present in proteins or with DNA base pairs is at the basis of UV-assisted crystal centring. Although very efficient, a well known side effect of illuminating biological samples with strong UV sources is the damage induced on the irradiated samples. In the present study the effectiveness of a softer UV light for crystal centring by taking advantage of low-power light-emitting diode (LED) sources has been investigated. The use of UV LEDs represents a low-cost solution for crystal centring with high specificity.


Subject(s)
Crystallography, X-Ray/methods , Ultraviolet Rays , Automation, Laboratory/methods , Proteins/chemistry , Proteins/radiation effects
6.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 10): 1059-66, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20944239

ABSTRACT

The generation of crystal lattice contacts by proteinaceous tags fused to target proteins is an attractive approach to aid in the crystallization of otherwise intractable proteins. Here, the use of green fluorescent protein (GFP) fusions for this purpose is demonstrated, using ubiquitin and the ubiquitin-binding motif (UBM) of Y-family polymerase ι as examples. The structure of the GFP-ubiquitin fusion protein revealed that the crystal lattice was formed by GFP moieties. Ubiquitin was accommodated in the lattice through interactions with the peripheral loops of GFP. However, in the GFP-UBM fusion crystal UBM formed extensive interactions with GFP and these interactions, together with UBM dimerization, mediated the crystal packing. Interestingly, the tyrosine residues that are involved in mediating crystal contacts in both GFP-ubiquitin and GFP-UBM crystals are arranged in a belt on the surface of the ß-barrel structure of GFP. Therefore, it is likely that GFP can assist in the crystallization of small proteins and of protein domains in general.


Subject(s)
Crystallization/methods , DNA-Directed DNA Polymerase/chemistry , Green Fluorescent Proteins/chemistry , Recombinant Fusion Proteins/chemistry , Ubiquitin/chemistry , Animals , Crystallography, X-Ray , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Protein Binding , Protein Engineering , Protein Structure, Tertiary/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tyrosine/chemistry , Ubiquitin/genetics , Ubiquitin/metabolism , DNA Polymerase theta
7.
Yakugaku Zasshi ; 130(5): 631-40, 2010 May.
Article in Japanese | MEDLINE | ID: mdl-20460857

ABSTRACT

The Targeted Protein Research Program (TPRP) started in 2007 as a sequel of the Protein 3000 Project which lasted from 2002 to 2007. In the new project, four cores, Protein Production, Structure Analysis, Control of Protein Functions with Compounds, and Informatics, have been established as focus of methodology developments critical for functional and structural studies by the target protein research teams. Within the "Analysis Core" synchrotron radiation plays a pivotal role providing X-ray beams for structural analyses of the target proteins. The two large Japanese synchrotron radiation facilities, SPring-8 and Photon Factory (PF), along with three protein crystallography groups from Hokkaido, Kyoto and Osaka Universities have teamed up to develop two complementary micro-beam beamlines, one on each synchrotron site, and associated technologies for cutting edge structural biology research. At the PF, there are 5 operational beamlines which are equipped with state-of-the-art instrumentation for high-throughput protein crystallography experiments. Within the TPRP framework, the PF is developing a micro-focus beamline optimized for a lower energy single anomalous diffraction (SAD) experiment. This will be particularly useful for structure determination of difficult protein targets for which heavy atom derivatives or selenomethionine substitution does not work and other standard phasing methods fail to give structure solutions. This will augment the capabilities of the PF structural biology beamlines with similar look-and-feel experimental environments.


Subject(s)
Crystallography, X-Ray , Proteins/chemistry , Synchrotrons/instrumentation , Biological Science Disciplines , Genome , Inactivation, Metabolic , Photons , Proteomics
9.
J Synchrotron Radiat ; 15(Pt 3): 296-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18421163

ABSTRACT

Owing to recent advances in high-throughput technology in macromolecular crystallography beamlines, such as high-brilliant X-ray sources, high-speed readout detectors and robotics, the number of samples that can be examined in a single visit to the beamline has increased dramatically. In order to make these experiments more efficient, two functions, remote monitoring and diffraction image evaluation, have been implemented in the macromolecular crystallography beamlines at the Photon Factory (PF). Remote monitoring allows scientists to participate in the experiment by watching from their laboratories, without having to come to the beamline. Diffraction image evaluation makes experiments easier, especially when using the sample exchange robot. To implement these two functions, two independent clients have been developed that work specifically for remote monitoring and diffraction image evaluation. In the macromolecular crystallography beamlines at PF, beamline control is performed using STARS (simple transmission and retrieval system). The system adopts a client-server style in which client programs communicate with each other through a server process using the STARS protocol. This is an advantage of the extension of the system; implementation of these new functions required few modifications of the existing system.


Subject(s)
Crystallography, X-Ray/methods , Macromolecular Substances/chemistry , Photons
10.
J Synchrotron Radiat ; 15(Pt 3): 300-3, 2008 May.
Article in English | MEDLINE | ID: mdl-18421164

ABSTRACT

Sample-exchange robots that can exchange cryo-pins bearing protein crystals out of experimental hutches according to user instructions have been developed. The robots were designed based on the SAM (Stanford Synchrotron Research Laboratory automated mounting) system. In order to reduce the time required for the sample exchange, the single tongs of the SAM system were modified and a double-tongs system that can hold two cryo-pins at the same time was developed. Robots with double tongs can move to the goniometer head holding the next cryo-pin with one set of tongs, dismount the experimented cryo-pin with the other set, and then mount the next pin onto the goniometer head without leaving the diffractometer area. Two different types of tongs have been installed: single tongs at beamlines BL-5A and AR-NW12A, and a double-tongs system at beamline BL-17A of the Photon Factory. The same graphical user interface software for operation of the sample-exchange robots is used at all beamlines, however, so that users do not need to consider differences between the systems. In a trial, the robot with double tongs could exchange samples within 10 s.


Subject(s)
Robotics , Photons
11.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 9): 1058-65, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16929107

ABSTRACT

Protein crystallization remains one of the bottlenecks in crystallographic analysis of macromolecules. An automated large-scale protein-crystallization system named PXS has been developed consisting of the following subsystems, which proceed in parallel under unified control software: dispensing precipitants and protein solutions, sealing crystallization plates, carrying robot, incubators, observation system and image-storage server. A sitting-drop crystallization plate specialized for PXS has also been designed and developed. PXS can set up 7680 drops for vapour diffusion per hour, which includes time for replenishing supplies such as disposable tips and crystallization plates. Images of the crystallization drops are automatically recorded according to a preprogrammed schedule and can be viewed by users remotely using web-based browser software. A number of protein crystals were successfully produced and several protein structures could be determined directly from crystals grown by PXS. In other cases, X-ray quality crystals were obtained by further optimization by manual screening based on the conditions found by PXS.


Subject(s)
Computational Biology/methods , Crystallization/methods , Proteins/chemistry , Automation , Computers , Databases, Protein , Internet , Models, Chemical , Models, Molecular , Protein Conformation , Software , Structure-Activity Relationship , User-Computer Interface
14.
J Synchrotron Radiat ; 11(Pt 1): 17-20, 2004 Jan 01.
Article in English | MEDLINE | ID: mdl-14646123

ABSTRACT

A control system for high-throughput protein crystallography experiments has been developed based on a multilevel secure (SSL v2/v3) UNIX socket under the Linux operating system. Main features of protein crystallography experiments (purification, crystallization, loop preparation, data collecting, data processing) are dealt with by the software. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data, that are stored in Network File Server) in a relational database (MySQL). The system consists of several servers and clients. TCP/IP secure UNIX sockets with four predefined behaviors [(a) listening to a request followed by a reply, (b) sending a request and waiting for a reply, (c) listening to a broadcast message, and (d) sending a broadcast message] support communications between all servers and clients allowing one to control experiments, view data, edit experimental conditions and perform data processing remotely. The usage of the interface software is well suited for developing well organized control software with a hierarchical structure of different software units (Gaponov et al., 1998), which will pass and receive different types of information. All communication is divided into two parts: low and top levels. Large and complicated control tasks are split into several smaller ones, which can be processed by control clients independently. For communicating with experimental equipment (beamline optical elements, robots, and specialized experimental equipment etc.), the STARS server, developed at the Photon Factory, is used (Kosuge et al., 2002). The STARS server allows any application with an open socket to be connected with any other clients that control experimental equipment. Majority of the source code is written in C/C++. GUI modules of the system were built mainly using Glade user interface builder for GTK+ and Gnome under Red Hat Linux 7.1 operating system.


Subject(s)
Crystallography/methods , Database Management Systems , Databases, Protein , Information Storage and Retrieval/methods , Programming Languages , Proteins/chemistry , Robotics/methods , Software , Feedback , Internet , Proteins/analysis , Proteins/classification , Software Design , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...