Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Plants (Basel) ; 13(5)2024 Mar 04.
Article En | MEDLINE | ID: mdl-38475565

Phenological gaps exert a significant influence on the growth of dwarf bamboos. However, how dwarf bamboos respond to and exploit these phenological gaps remain enigmatic. The light environment, soil nutrients, leaf morphology, maximum photosynthetic rate, foliage dynamics, and branching characteristics of Sasa kurilensis were examined under the canopies of Fagus crenata and Magnolia obovata. The goal was to elucidate the adaptive responses of S. kurilensis to phenological gaps in the forest understory. The findings suggest that phenological gaps under an M. obovata canopy augment the available biomass of S. kurilensis, enhancing leaf area, leaf thickness, and carbon content per unit area. However, these gaps do not appreciably influence the maximum photosynthetic rate, total leaf number, leaf lifespan, branch number, and average branch length. These findings underscore the significant impact of annually recurring phenological gaps on various aspects of S. kurilensis growth, such as its aboveground biomass, leaf morphology, and leaf biochemical characteristics. It appears that leaf morphology is a pivotal trait in the response of S. kurilensis to phenological gaps. Given the potential ubiquity of the influence of phenological gaps on dwarf bamboos across most deciduous broadleaf forests, this canopy phenomenon should not be overlooked.

2.
Ann Bot ; 127(5): 633-644, 2021 04 17.
Article En | MEDLINE | ID: mdl-33263745

BACKGROUND AND AIMS: Interspecific difference in pollinators (pollinator isolation) is important for reproductive isolation in flowering plants. Species-specific pollination by fungus gnats has been discovered in several plant taxa, suggesting that they can contribute to reproductive isolation. Nevertheless, their contribution has not been studied in detail, partly because they are too small for field observations during flower visitation. To quantify their flower visitation, we used the genus Arisaema (Araceae) because the pitcher-like spathe of Arisaema can trap all floral visitors. METHODS: We evaluated floral visitor assemblage in an altitudinal gradient including five Arisaema species. We also examined interspecific differences in altitudinal distribution (geographic isolation) and flowering phenology (phenological isolation). To exclude the effect of interspecific differences in altitudinal distribution on floral visitor assemblage, we established ten experimental plots including the five Arisaema species in high- and low-altitude areas and collected floral visitors. We also collected floral visitors in three additional sites. Finally, we estimated the strength and contribution of these three reproductive barriers using a unified formula for reproductive isolation. KEY RESULTS: Each Arisaema species selectively attracted different fungus gnats in the altitudinal gradient, experimental plots and additional sites. Altitudinal distribution and flowering phenology differed among the five Arisaema species, whereas the strength of geographic and phenological isolations were distinctly weaker than those in pollinator isolation. Nevertheless, the absolute contribution of pollinator isolation to total reproductive isolation was weaker than geographic and phenological isolations, because pollinator isolation functions after the two early-acting barriers in plant life history. CONCLUSIONS: Our results suggest that selective pollination by fungus gnats potentially contributes to reproductive isolation. Since geographic and phenological isolations can be disrupted by habitat disturbance and interannual climate change, the strong and stable pollinator isolation might compensate for the weakened early-acting barriers as an alternative reproductive isolation among the five Arisaema species.


Arisaema , Pollination , Flowers , Fungi , Reproductive Isolation
3.
Am J Bot ; 106(12): 1612-1621, 2019 12.
Article En | MEDLINE | ID: mdl-31729010

PREMISE: The genus Arisaema (Araceae) has rapidly diversified in Japan, and multiple species often coexist in the field. Although Japanese Arisaema species hybridize from artificial crossing, hybrid individuals are rare in mixed populations; suggesting the presence of effective pre-pollination barriers. We examined the following reproductive barriers between A. sikokianum and A. tosaense: habitat, phenology, and pollinator isolations. METHODS: Habitat isolation was examined by interspecific comparisons of microhabitat conditions at a mixed site and of altitude at the sampling site of herbarium specimens. Phenological isolation was evaluated by comparing seasonal transition in apparent spathe condition and frequency of insect visitation. Pollinator isolation was examined by comparing floral visitor assemblages between the two Arisaema species. To avoid overestimation of pollinator isolation due to seasonal changes in insect assemblages, we also compared visitor assemblages between natural and late-flowering A. sikokianum, where the latter was experimentally introduced and blooming with a natural A. tosaense population. RESULTS: Microhabitat conditions and sampling elevations of herbarium specimens overlapped between the two Arisaema species. At the population level, A. sikokianum and A. tosaense flowered for 39 and 52 days, respectively, with 13 days overlap. Insect visitation in A. sikokianum decreased before the seasonal overlap. Floral visitor assemblages differed between the two Arisaema species, while the difference between natural and late-flowering A. sikokianum was less distinct. CONCLUSIONS: Phenological and pollinator isolation contribute to reproductive isolation between the two Arisaema species and should enable the two species to coexist in this area.


Arisaema , Pollination , Animals , Flowers , Japan , Sympatry
4.
Mycorrhiza ; 22(6): 419-28, 2012 Aug.
Article En | MEDLINE | ID: mdl-22041997

Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.


Glomeromycota/physiology , Juniperus/microbiology , Mycorrhizae/physiology , Soil Microbiology , Bacteria/genetics , Desert Climate , Ecosystem , Endophytes/genetics , Endophytes/physiology , Fungi/genetics , Fungi/physiology , Glomeromycota/genetics , Groundwater , Mycorrhizae/genetics , Phylogeny , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Soil/chemistry
...