Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 70
2.
PLoS Genet ; 19(12): e1011086, 2023 Dec.
Article En | MEDLINE | ID: mdl-38134220

Structural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated for de novo genome assemblies of 26 diverse inbred maize lines. We generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both simple and complex connections between TEs and structural variants. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that within these recently diverged genomic regions, deletions of transposable elements likely account for more structural variation events and base pairs than insertions. These deletions are often large structural variants containing multiple transposable elements. Combined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.


DNA Transposable Elements , Zea mays , Humans , DNA Transposable Elements/genetics , Zea mays/genetics , Genomics
3.
Plant Methods ; 19(1): 125, 2023 Nov 13.
Article En | MEDLINE | ID: mdl-37957737

BACKGROUND: Inflorescence properties such length, spikelet number, and their spatial distribution across the rachis, are fundamental indicators of seed productivity in grasses and have been a target of selection throughout domestication and crop improvement. However, quantifying such complex morphology is laborious, time-consuming, and commonly limited to human-perceived traits. These limitations can be exacerbated by unfavorable trait correlations between inflorescence architecture and seed yield that can be unconsciously selected for. Computer vision offers an alternative to conventional phenotyping, enabling higher throughput and reducing subjectivity. These approaches provide valuable insights into the determinants of seed yield, and thus, aid breeding decisions. RESULTS: Here, we described SpykProps, an inexpensive Python-based imaging system to quantify morphological properties in unilateral inflorescences, that was developed and tested on images of perennial grass (Lolium perenne L.) spikes. SpykProps is able to rapidly and accurately identify spikes (RMSE < 1), estimate their length (R2 = 0.96), and number of spikelets (R2 = 0.61). It also quantifies color and shape from hundreds of interacting descriptors that are accurate predictors of architectural and agronomic traits such as seed yield potential (R2 = 0.94), rachis weight (R2 = 0.83), and seed shattering (R2 = 0.85). CONCLUSIONS: SpykProps is an open-source platform to characterize inflorescence architecture in a wide range of grasses. This imaging tool generates conventional and latent traits that can be used to better characterize developmental and agronomic traits associated with inflorescence architecture, and has applications in fields that include breeding, physiology, evolution, and development biology.

4.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Article En | MEDLINE | ID: mdl-37950891

The US standard for maize commercially grown for grain specifies that yellow corn can contain at maximum 5% corn of other colors. Inbred parents of commercial hybrids typically have clear pericarp, but transgressive segregants in breeding populations can display variation in pericarp pigmentation. We identified 10 doubled haploid biparental populations segregating for pigmented pericarp and evaluated qualitative genetic models using chi-square tests of observed and expected frequencies. Pigmentation ranged from light to dark brown color, and pigmentation intensity was quantitatively measured across 1,327 inbred lines using hue calculated from RGB pixel values. Genetic mapping was used to identify loci associated with pigmentation intensity. For 9 populations, pigmentation inheritance best fit a hypothesis of a 2- or 3-gene epistatic model. Significant differences in pigment intensity were observed across populations. W606S-derived inbred lines with the darkest pericarp often had clear glumes, suggesting the presence of a novel P1-rw allele, a hypothesis supported by a significant quantitative trait locus peak at P1. A separate quantitative trait locus region on chromosome 2 between 221.64 and 226.66 Mbp was identified in LH82-derived populations, and the peak near p1 was absent. A genome-wide association study using 416 inbred lines from the Wisconsin Diversity panel with full genome resequencing revealed 4 significant associations including the region near P1. This study supports that pericarp pigmentation among dent maize inbreds can arise by transgressive segregation when pigmentation in the parental generation is absent and is partially explained by functional allelic variation at the P1 locus.


Genes, Plant , Zea mays , Zea mays/genetics , Genome-Wide Association Study , Plant Breeding , Pigmentation/genetics
5.
Theor Appl Genet ; 136(11): 220, 2023 Oct 11.
Article En | MEDLINE | ID: mdl-37819415

KEY MESSAGE: We demonstrate potential for improved multi-environment genomic prediction accuracy using structural variant markers. However, the degree of observed improvement is highly dependent on the genetic architecture of the trait. Breeders commonly use genetic markers to predict the performance of untested individuals as a way to improve the efficiency of breeding programs. These genomic prediction models have almost exclusively used single nucleotide polymorphisms (SNPs) as their source of genetic information, even though other types of markers exist, such as structural variants (SVs). Given that SVs are associated with environmental adaptation and not all of them are in linkage disequilibrium to SNPs, SVs have the potential to bring additional information to multi-environment prediction models that are not captured by SNPs alone. Here, we evaluated different marker types (SNPs and/or SVs) on prediction accuracy across a range of genetic architectures for simulated traits across multiple environments. Our results show that SVs can improve prediction accuracy, but it is highly dependent on the genetic architecture of the trait and the relative gain in accuracy is minimal. When SVs are the only causative variant type, 70% of the time SV predictors outperform SNP predictors. However, the improvement in accuracy in these instances is only 1.5% on average. Further simulations with predictors in varying degrees of LD with causative variants of different types (e.g., SNPs, SVs, SNPs and SVs) showed that prediction accuracy increased as linkage disequilibrium between causative variants and predictors increased regardless of the marker type. This study demonstrates that knowing the genetic architecture of a trait in deciding what markers to use in large-scale genomic prediction modeling in a breeding program is more important than what types of markers to use.


Genome , Models, Genetic , Humans , Computer Simulation , Genomics/methods , Phenotype , Polymorphism, Single Nucleotide , Selection, Genetic , Genotype
6.
Genetics ; 225(3)2023 11 01.
Article En | MEDLINE | ID: mdl-37815810

The highly active family of Mutator (Mu) DNA transposons has been widely used for forward and reverse genetics in maize. There are examples of Mu-suppressible alleles that result in conditional phenotypic effects based on the activity of Mu. Phenotypes from these Mu-suppressible mutations are observed in Mu-active genetic backgrounds, but absent when Mu activity is lost. For some Mu-suppressible alleles, phenotypic suppression likely results from an outward-reading promoter within Mu that is only active when the autonomous Mu element is silenced or lost. We isolated 35 Mu alleles from the UniformMu population that represent insertions in 24 different genes. Most of these mutant alleles are due to insertions within gene coding sequences, but several 5' UTR and intron insertions were included. RNA-seq and de novo transcript assembly were utilized to document the transcripts produced from 33 of these Mu insertion alleles. For 20 of the 33 alleles, there was evidence of transcripts initiating within the Mu sequence reading through the gene. This outward-reading promoter activity was detected in multiple types of Mu elements and does not depend on the orientation of Mu. Expression analyses of Mu-initiated transcripts revealed the Mu promoter often provides gene expression levels and patterns that are similar to the wild-type gene. These results suggest the Mu promoter may represent a minimal promoter that can respond to gene cis-regulatory elements. Findings from this study have implications for maize researchers using the UniformMu population, and more broadly highlight a strategy for transposons to co-exist with their host.


Zea mays , Base Sequence , DNA Transposable Elements , Mutation , Zea mays/genetics
7.
BMC Res Notes ; 16(1): 219, 2023 Sep 14.
Article En | MEDLINE | ID: mdl-37710302

OBJECTIVES: This release note describes the Maize GxE project datasets within the Genomes to Fields (G2F) Initiative. The Maize GxE project aims to understand genotype by environment (GxE) interactions and use the information collected to improve resource allocation efficiency and increase genotype predictability and stability, particularly in scenarios of variable environmental patterns. Hybrids and inbreds are evaluated across multiple environments and phenotypic, genotypic, environmental, and metadata information are made publicly available. DATA DESCRIPTION: The datasets include phenotypic data of the hybrids and inbreds evaluated in 30 locations across the US and one location in Germany in 2020 and 2021, soil and climatic measurements and metadata information for all environments (combination of year and location), ReadMe, and description files for each data type. A set of common hybrids is present in each environment to connect with previous evaluations. Each environment had a collaborator responsible for collecting and submitting the data, the GxE coordination team combined all the collected information and removed obvious erroneous data. Collaborators received the combined data to use, verify and declare that the data generated in their own environments was accurate. Combined data is released to the public with minimal filtering to maintain fidelity to the original data.


Resource Allocation , Zea mays , Zea mays/genetics , Seasons , Genotype , Germany
8.
BMC Res Notes ; 16(1): 148, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37461058

OBJECTIVES: The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generated by this project and other publicly available data. DATA DESCRIPTION: This resource used data from the Maize GxE project within the G2F Initiative [1]. The dataset included phenotypic and genotypic data of the hybrids evaluated in 45 locations from 2014 to 2022. Also, soil, weather, environmental covariates data and metadata information for all environments (combination of year and location). Competitors also had access to ReadMe files which described all the files provided. The Maize GxE is a collaborative project and all the data generated becomes publicly available [2]. The dataset used in the 2022 Prediction Competition was curated and lightly filtered for quality and to ensure naming uniformity across years.


Genome, Plant , Zea mays , Phenotype , Zea mays/genetics , Genotype , Genome, Plant/genetics , Edible Grain/genetics
9.
BMC Genom Data ; 24(1): 29, 2023 05 25.
Article En | MEDLINE | ID: mdl-37231352

OBJECTIVES: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions. DATA DESCRIPTION: Datasets include phenotypic, climatic, and soil measurements, metadata information, and inbred genotypic information for each combination of location and year. Collaborators in the G2F initiative collected data for each location and year; members of the group responsible for coordination and data processing combined all the collected information and removed obvious erroneous data. The collaborators received the data before the DOI release to verify and declare that the data generated in their own locations was accurate. ReadMe and description files are available for each dataset. Previous years of evaluation are already publicly available, with common hybrids present to connect across all locations and years evaluated since this project's inception.


Genome, Plant , Zea mays , Phenotype , Zea mays/genetics , Seasons , Genotype , Genome, Plant/genetics
10.
Genetics ; 224(4)2023 08 09.
Article En | MEDLINE | ID: mdl-37246567

Understanding how plants adapt to specific environmental changes and identifying genetic markers associated with phenotypic plasticity can help breeders develop plant varieties adapted to a rapidly changing climate. Here, we propose the use of marker effect networks as a novel method to identify markers associated with environmental adaptability. These marker effect networks are built by adapting commonly used software for building gene coexpression networks with marker effects across growth environments as the input data into the networks. To demonstrate the utility of these networks, we built networks from the marker effects of ∼2,000 nonredundant markers from 400 maize hybrids across 9 environments. We demonstrate that networks can be generated using this approach, and that the markers that are covarying are rarely in linkage disequilibrium, thus representing higher biological relevance. Multiple covarying marker modules associated with different weather factors throughout the growing season were identified within the marker effect networks. Finally, a factorial test of analysis parameters demonstrated that marker effect networks are relatively robust to these options, with high overlap in modules associated with the same weather factors across analysis parameters. This novel application of network analysis provides unique insights into phenotypic plasticity and specific environmental factors that modulate the genome.


Genotype , Phenotype , Genetic Markers , Linkage Disequilibrium
11.
G3 (Bethesda) ; 13(4)2023 04 11.
Article En | MEDLINE | ID: mdl-36625555

Accurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management interventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 model development methods, and contextualize model performance using conventional linear and machine learning models. We examine the usefulness of incorporating interactions between disparate data types. We find deep learning and best linear unbiased predictor (BLUP) models with interactions had the best overall performance. BLUP models achieved the lowest average error, but deep learning models performed more consistently with similar average error. Optimizing deep neural network submodules for each data type improved model performance relative to optimizing the whole model for all data types at once. Examining the effect of interactions in the best-performing model revealed that including interactions altered the model's sensitivity to weather and management features, including a reduction of the importance scores for timepoints expected to have a limited physiological basis for influencing yield-those at the extreme end of the season, nearly 200 days post planting. Based on these results, deep learning provides a promising avenue for the phenotypic prediction of complex traits in complex environments and a potential mechanism to better understand the influence of environmental and genetic factors.


Deep Learning , Neural Networks, Computer , Machine Learning , Genotype , Multifactorial Inheritance
12.
Plant J ; 111(1): 103-116, 2022 07.
Article En | MEDLINE | ID: mdl-35436373

The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA-directed DNA methylation (RdDM) in plant species. Setaria viridis is a model monocot species with a relatively compact genome that has limited transposable element (TE) content. CRISPR-based genome editing approaches were used to create loss-of-function alleles for the two putative functional DRM genes in S. viridis to probe the role of RdDM. Double mutant (drm1ab) plants exhibit some morphological abnormalities but are fully viable. Whole-genome methylation profiling provided evidence for the widespread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild-type plants. Evidence was also found for the locus-specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified genes with altered expression in the drm1ab mutants. However, the majority of genes with high levels of CHH methylation directly surrounding the transcription start site or in nearby promoter regions in wild-type plants do not have altered expression in the drm1ab mutant, even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of TEs identified several transposons that are transcriptionally activated in drm1ab mutants. These transposons are likely to require active RdDM for the maintenance of transcriptional repression.


Setaria Plant , DNA Methylation/genetics , Gene Expression Regulation, Plant/genetics , Methyltransferases/genetics , Setaria Plant/genetics , Transcriptome
14.
G3 (Bethesda) ; 11(8)2021 08 07.
Article En | MEDLINE | ID: mdl-34849810

Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.


DNA Methylation , Zea mays , Chromatin/genetics , Gene Expression Regulation, Plant , Genome, Plant , Humans , Zea mays/genetics
16.
G3 (Bethesda) ; 11(10)2021 09 27.
Article En | MEDLINE | ID: mdl-34568911

Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome-wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short-read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 nonredundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e., LTRs, Helitrons, and TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high-frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP-based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.


DNA Transposable Elements , Zea mays , DNA Transposable Elements/genetics , Genotype , Introns , Terminal Repeat Sequences , Zea mays/genetics
17.
Theor Appl Genet ; 134(11): 3743-3757, 2021 Nov.
Article En | MEDLINE | ID: mdl-34345971

KEY MESSAGE: Moisture content during nixtamalization can be accurately predicted from NIR spectroscopy when coupled with a support vector machine (SVM) model, is strongly modulated by the environment, and has a complex genetic architecture. Lack of high-throughput phenotyping systems for determining moisture content during the maize nixtamalization cooking process has led to difficulty in breeding for this trait. This study provides a high-throughput, quantitative measure of kernel moisture content during nixtamalization based on NIR scanning of uncooked maize kernels. Machine learning was utilized to develop models based on the combination of NIR spectra and moisture content determined from a scaled-down benchtop cook method. A linear support vector machine (SVM) model with a Spearman's rank correlation coefficient of 0.852 between wet laboratory and predicted values was developed from 100 diverse temperate genotypes grown in replicate across two environments. This model was applied to NIR spectra data from 501 diverse temperate genotypes grown in replicate in five environments. Analysis of variance revealed environment explained the highest percent of the variation (51.5%), followed by genotype (15.6%) and genotype-by-environment interaction (11.2%). A genome-wide association study identified 26 significant loci across five environments that explained between 5.04% and 16.01% (average = 10.41%). However, genome-wide markers explained 10.54% to 45.99% (average = 31.68%) of the variation, indicating the genetic architecture of this trait is likely complex and controlled by many loci of small effect. This study provides a high-throughput method to evaluate moisture content during nixtamalization that is feasible at the scale of a breeding program and provides important information about the factors contributing to variation of this trait for breeders and food companies to make future strategies to improve this important processing trait.


Cooking/methods , Machine Learning , Spectroscopy, Near-Infrared , Water/analysis , Genetic Association Studies , Genotype , Zea mays/genetics
18.
Science ; 373(6555): 655-662, 2021 08 06.
Article En | MEDLINE | ID: mdl-34353948

We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 inbreds that serve as the founders for the maize nested association mapping population. The number of pan-genes in these diverse genomes exceeds 103,000, with approximately a third found across all genotypes. The results demonstrate that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres revealed additional variation in major cytological landmarks. We show that combining structural variation with single-nucleotide polymorphisms can improve the power of quantitative mapping studies. We also document variation at the level of DNA methylation and demonstrate that unmethylated regions are enriched for cis-regulatory elements that contribute to phenotypic variation.


Genome, Plant , Molecular Sequence Annotation , Zea mays/genetics , Centromere/genetics , Chromosome Mapping , Chromosomes, Plant , DNA Methylation , Disease Resistance/genetics , Genes, Plant , Genetic Variation , Genotype , High-Throughput Nucleotide Sequencing , Multifactorial Inheritance/genetics , Phenotype , Plant Diseases , Polymorphism, Single Nucleotide , Regulatory Sequences, Nucleic Acid , Sequence Analysis, DNA , Tetraploidy , Transcriptome , Whole Genome Sequencing
19.
Plant Genome ; 14(3): e20115, 2021 11.
Article En | MEDLINE | ID: mdl-34197039

Maize (Zea mays L.) is a multi-purpose row crop grown worldwide, which, over time, has often been bred for increased yield at the detriment of lower composition grain quality. Some knowledge of the genetic factors that affect quality traits has been discovered through the study of classical maize mutants; however, much of the underlying genetic control of these traits and the interaction between these traits remains unknown. To better understand variation that exists for grain compositional traits in maize, we evaluated 501 diverse temperate maize inbred lines in five unique environments and predicted 16 compositional traits (e.g., carbohydrates, protein, and starch) based on the output of near-infrared (NIR) spectroscopy. Phenotypic analysis found substantial variation for compositional traits and the majority of variation was explained by genetic and environmental factors. Correlations and trade-offs among traits in different maize types (e.g., dent, sweetcorn, and popcorn) were explored, and significant differences and meaningful correlations were detected. In total, 22.9-71.0% of the phenotypic variation across these traits could be explained using 2,386,666 single nucleotide polymorphism (SNP) markers generated from whole-genome resequencing data. A genome-wide association study (GWAS) was conducted using these same markers and found 72 statistically significant SNPs for 11 compositional traits. This study provides valuable insights in the phenotypic variation and genetic control underlying compositional traits that can be used in breeding programs for improving maize grain quality.


Seeds , Zea mays , Genetic Association Studies , Phenotype , Plant Breeding , Seeds/chemistry , Starch/chemistry , Zea mays/chemistry , Zea mays/genetics
20.
Plant Genome ; 14(3): e20114, 2021 11.
Article En | MEDLINE | ID: mdl-34275202

The stiff-stalk heterotic group in Maize (Zea mays L.) is an important source of inbreds used in U.S. commercial hybrid production. Founder inbreds B14, B37, B73, and, to a lesser extent, B84, are found in the pedigrees of a majority of commercial seed parent inbred lines. We created high-quality genome assemblies of B84 and four expired Plant Variety Protection (ex-PVP) lines LH145 representing B14, NKH8431 of mixed descent, PHB47 representing B37, and PHJ40, which is a Pioneer Hi-Bred International (PHI) early stiff-stalk type. Sequence was generated using long-read sequencing achieving highly contiguous assemblies of 2.13-2.18 Gbp with N50 scaffold lengths >200 Mbp. Inbred-specific gene annotations were generated using a core five-tissue gene expression atlas, whereas transposable element (TE) annotation was conducted using de novo and homology-directed methodologies. Compared with the reference inbred B73, synteny analyses revealed extensive collinearity across the five stiff-stalk genomes, although unique components of the maize pangenome were detected. Comparison of this set of stiff-stalk inbreds with the original Iowa Stiff Stalk Synthetic breeding population revealed that these inbreds represent only a proportion of variation in the original stiff-stalk pool and there are highly conserved haplotypes in released public and ex-Plant Variety Protection inbreds. Despite the reduction in variation from the original stiff-stalk population, substantial genetic and genomic variation was identified supporting the potential for continued breeding success in this pool. The assemblies described here represent stiff-stalk inbreds that have historical and commercial relevance and provide further insight into the emerging maize pangenome.


Plant Breeding , Zea mays , Genomics , Haplotypes , Hybrid Vigor , Zea mays/genetics
...