Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 478: 135518, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39154474

ABSTRACT

The solid culture method for measuring the efficiency of ultraviolet (UV) disinfection of airborne bacteria is time-consuming, typically taking 12-48 h. To expedite such experiments, this study proposed a liquid culture method assisted by adenosine triphosphate (ATP) analysis, as a liquid culture is faster than a solid culture, and measurement of ATP does not require waiting for visible colonies to form. Escherichia coli (E. coli) was used as the experimental bacterium. This study first compared the log reduction of bacteria in liquid as measured by the proposed method and by the traditional solid culture method. The minimum liquid culture time was determined for different bacterial concentration ranges. Finally, the feasibility of the proposed method was validated by UV disinfection experiments on airborne bacteria. The results indicated that the proposed method measured a similar log reduction to that of the solid culture method in liquid experiments. The minimum liquid culture time for E. coli in 105-106 colony forming units (CFU)/mL was 2 h. The validation experiments demonstrated that the proposed method is capable of measuring the UV disinfection efficiency of airborne bacteria. The proposed method can accelerate laboratory experiments on UV disinfection of airborne bacteria, which in turn can support the effective design and utilization of UV disinfection in real life.

2.
Ecotoxicol Environ Saf ; 280: 116530, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38833976

ABSTRACT

The heavy metals and bioreactivity properties of endotoxin in personal exposure to fine particulate matter (PM2.5) were characterized in the analysis. The average personal exposure concentrations to PM2.5 were ranged from 6.8 to 96.6 µg/m3. The mean personal PM2.5 concentrations in spring, summer, autumn, and winter were 32.1±15.8, 22.4±11.8, 35.3±11.9, and 50.2±19.9 µg/m3, respectively. There were 85 % of study targets exceeded the World Health Organization (WHO) PM2.5 threshold (24 hours). The mean endotoxin concentrations ranged from 1.086 ± 0.384-1.912 ± 0.419 EU/m3, with a geometric mean (GM) varied from 1.034 to 1.869. The concentration of iron (Fe) (0.008-1.16 µg/m3) was one of the most abundant transition metals in the samples that could affect endotoxin toxicity under Toll-Like Receptor 4 (TLR4) stimulation. In summer, the interleukin 6 (IL-6) levels showed statistically significant differences compared to other seasons. Spearman correlation analysis showed endotoxin concentrations were positively correlated with chromium (Cr) and nickel (Ni), implying possible roles as nutrients and further transport via adhering to the surface of fine inorganic particles. Mixed-effects model analysis demonstrated that Tumor necrosis factor-α (TNF-α) production was positively associated with endotoxin concentration and Cr as a combined exposure factor. The Cr contained the highest combined effect (0.205-0.262), suggesting that Cr can potentially exacerbate the effect of endotoxin on inflammation and oxidative stress. The findings will be useful for practical policies for mitigating air pollution to protect the public health of the citizens.


Subject(s)
Air Pollutants , Endotoxins , Environmental Monitoring , Particulate Matter , Seasons , Particulate Matter/analysis , Endotoxins/analysis , Humans , Hong Kong , Air Pollutants/analysis , Aged , Environmental Exposure , Metals, Heavy/analysis , Interleukin-6 , Tumor Necrosis Factor-alpha , Particle Size , Female , Male
3.
Sci Total Environ ; 945: 173966, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38897457

ABSTRACT

Microplastics (MPs), recognized as emerging pollutants, pose significant potential impacts on the environment and human health. The investigation into atmospheric MPs is nascent due to the absence of effective characterization methods, leaving their concentration, distribution, sources, and impacts on human health largely undefined with evidence still emerging. This review compiles the latest literature on the sources, distribution, environmental behaviors, and toxicological effects of atmospheric MPs. It delves into the methodologies for source identification, distribution patterns, and the contemporary approaches to assess the toxicological effects of atmospheric MPs. Significantly, this review emphasizes the role of Machine Learning (ML) and Artificial Intelligence (AI) technologies as novel and promising tools in enhancing the precision and depth of research into atmospheric MPs, including but not limited to the spatiotemporal dynamics, source apportionment, and potential health impacts of atmospheric MPs. The integration of these advanced technologies facilitates a more nuanced understanding of MPs' behavior and effects, marking a pivotal advancement in the field. This review aims to deliver an in-depth view of atmospheric MPs, enhancing knowledge and awareness of their environmental and human health impacts. It calls upon scholars to focus on the research of atmospheric MPs based on new technologies of ML and AI, improving the database as well as offering fresh perspectives on this critical issue.

5.
J Hazard Mater ; 472: 134507, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38718510

ABSTRACT

The long-term joint impacts of fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) on mortality are inconclusive. To bridge this research gap, we included 283,568 adults from the Taiwan MJ cohort between 2005 and 2016 and linked with the mortality data until 31 May 2019. Participants' annual average exposures to PM2.5, NO2, and O3 were estimated using satellite-based spatial-temporal models. We applied elastic net-regularised Cox models to construct a weighted environmental risk score (WERS) for the joint effects of three pollutants on non-accidental, cardiovascular, and cancer mortality and evaluated the contribution of each pollutant. The three pollutants jointly raised non-accidental mortality risk with a WERS hazard ratio (HR) of 1.186 (95% CI: 1.118-1.259) per standard deviation increase in each pollutant and weights of 72.8%, 15.2%, and 12.0% for PM2.5, NO2, and O3, respectively. The WERS increased cardiovascular death risk [HR: 1.248 (1.042-1.496)], with PM2.5 as the first contributor and O3 as the second. The WERS also elevated the cancer death risk [HR: 1.173 (1.083-1.270)], where PM2.5 played the dominant role and NO2 ranked second. Coordinated control of these three pollutants can optimise the health benefits of air quality improvements.


Subject(s)
Air Pollutants , Cardiovascular Diseases , Environmental Exposure , Neoplasms , Nitrogen Dioxide , Ozone , Particulate Matter , Humans , Particulate Matter/toxicity , Particulate Matter/analysis , Air Pollutants/toxicity , Air Pollutants/analysis , Male , Taiwan/epidemiology , Middle Aged , Female , Ozone/analysis , Nitrogen Dioxide/analysis , Nitrogen Dioxide/toxicity , Longitudinal Studies , Neoplasms/mortality , Cardiovascular Diseases/mortality , Environmental Exposure/adverse effects , Adult , Aged , Cohort Studies , Air Pollution/adverse effects , Air Pollution/analysis , Cause of Death
6.
Chemosphere ; 357: 141975, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38615960

ABSTRACT

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.


Subject(s)
Air Pollution , Inhalation Exposure , Particulate Matter , Humans , Middle Aged , Aged , Aged, 80 and over , Male , Female , Particulate Matter/analysis , Inhalation Exposure/statistics & numerical data , Air Pollution/statistics & numerical data , Hong Kong , Particle Size , Environmental Monitoring , Nitrates/analysis , Sulfates/analysis
7.
Sci Total Environ ; 919: 170639, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38316304

ABSTRACT

BACKGROUND: Comprehensive research on the effects of individual benzene, toluene, ethylbenzene, and xylenes (BTEX) and their mixture measured in blood samples, on cardiovascular diseases (CVD) and related risk factors among the general population is limited. OBJECTIVES: To investigate the effects of blood individual and mixed BTEX on total CVD and its subtypes, lipid profiles, and white blood cell (WBC) count. METHODS: Survey-weighted multivariate logistic regression was used to examine the associations between blood individual and mixed BTEX with CVD and its subtypes in 17,007 participants from NHANES 1999-2018. The combined effect of BTEX mixture on CVD was estimated using weighted quantile sum modeling and quantile g-computation. Weighted multivariate linear regression assessed the effects of BTEX on lipid profiles and WBC, including its five-part differential count. RESULTS: In comparison to the reference quartile of BTEX mixture, individuals in the highest quartile had a significantly increased adjusted odds ratio of CVD risk (1.64, 95 % CI: 1.23 to 2.19, P for trend = 0.008). Positive associations were observed for benzene, toluene, ethylbenzene, and m-/p-xylene, demonstrating a monotonically increasing exposure-response relationship. Mixed BTEX was associated with congestive heart failure (CHF), angina pectoris, and heart attack. Individual benzene, toluene, and ethylbenzene were associated with CHF, while toluene, ethylbenzene, and all xylene isomers were linked to angina pectoris. Benzene, toluene, and o-xylene were associated with heart attack. Both mixed and individual BTEX showed positive associations with triglycerides, cholesterol, low-density lipoprotein, and WBC, including its five-part differential count, but a negative relationship with high-density lipoprotein. Subgroup analyses identified modifying effects of smoking, drinking, exercise, BMI, hypertension, and diabetes on the associations between specific toxicants and CVD risk. CONCLUSIONS: Exposure to BTEX was associated with cardiovascular diseases and cardiovascular risk factors. These findings emphasize the importance of considering blood BTEX levels when assessing cardiovascular health risks.


Subject(s)
Cardiovascular Diseases , Dyslipidemias , Myocardial Infarction , Humans , Benzene/analysis , Toluene/analysis , Xylenes/analysis , Leukocytosis , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Nutrition Surveys , Smoking , Benzene Derivatives/analysis , Angina Pectoris , Lipids
8.
Environ Res ; 247: 118284, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38253196

ABSTRACT

Ambient fine particulate matter (PM2.5) is a leading environmental risk factor globally, and over half of the associated disease burden are caused by cardiovascular disease. Numerous randomized controlled trials (RCT) have investigated the short-term cardiovascular benefits of indoor air purifiers (IAPs), but major knowledge gaps remain on their longer-term benefits. In this 1-year, randomized, double-blinded, parallel controlled trial of 47 elderly (ntrue-purification = 24; nsham-purification = 23) aged ≥70 years, true-purification reduced household PM2.5 levels by 28% and maintained lower exposure throughout the year compared to the sham-purification group. After 12 months of intervention, a significant reduction of diastolic blood pressure was found in the true-purification versus sham-purification group (-4.62 [95% CI: -7.28, -1.96] mmHg) compared to baseline measurement prior to the intervention, whereas systolic blood pressure showed directionally consistent but statistically non-significant effect (-2.49 [95% CI: -9.25, 4.28] mmHg). Qualitatively similar patterns of associations were observed for pulse pressure (-2.30 [95% CI: -6.57, 1.96] mmHg) and carotid intima-media thickness (-10.0% [95% CI: -24.8%, 4.7%]), but these were not statistically significant. Overall, we found suggestive evidence of cardiovascular benefits of long-term IAPs use, particularly on diastolic blood pressure. Evidence on other longer-term cardiovascular traits is less clear. Further trials with larger sample sizes and long-term follow-up are needed across diverse populations to evaluate the cardiovascular benefits of IAPs.


Subject(s)
Air Filters , Air Pollutants , Air Pollution, Indoor , Air Pollution , Cardiovascular Diseases , Cardiovascular System , Aged , Humans , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Hong Kong , Particulate Matter/analysis , Cardiovascular Diseases/prevention & control , Air Pollutants/analysis , Air Pollution/analysis , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL