Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38563820

ABSTRACT

Inborn errors of immunity lead to autoimmunity, inflammation, allergy, infection, and/or malignancy. Disease-causing JAK1 gain-of-function (GoF) mutations are considered exceedingly rare and have been identified in only four families. Here, we use forward and reverse genetics to identify 59 individuals harboring one of four heterozygous JAK1 variants. In vitro and ex vivo analysis of these variants revealed hyperactive baseline and cytokine-induced STAT phosphorylation and interferon-stimulated gene (ISG) levels compared with wild-type JAK1. A systematic review of electronic health records from the BioME Biobank revealed increased likelihood of clinical presentation with autoimmunity, atopy, colitis, and/or dermatitis in JAK1 variant-positive individuals. Finally, treatment of one affected patient with severe atopic dermatitis using the JAK1/JAK2-selective inhibitor, baricitinib, resulted in clinically significant improvement. These findings suggest that individually rare JAK1 GoF variants may underlie an emerging syndrome with more common presentations of autoimmune and inflammatory disease (JAACD syndrome). More broadly, individuals who present with such conditions may benefit from genetic testing for the presence of JAK1 GoF variants.


Subject(s)
Colitis , Dermatitis , Hypersensitivity , Humans , Autoimmunity , Colitis/genetics , Inflammation , Janus Kinase 1/genetics
3.
Science ; 370(6515)2020 10 23.
Article in English | MEDLINE | ID: mdl-32972995

ABSTRACT

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Interferon Type I/immunology , Loss of Function Mutation , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Asymptomatic Infections , Betacoronavirus , COVID-19 , Child , Child, Preschool , Female , Genetic Loci , Genetic Predisposition to Disease , Humans , Infant , Interferon Regulatory Factor-7/deficiency , Interferon Regulatory Factor-7/genetics , Male , Middle Aged , Pandemics , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Toll-Like Receptor 3/deficiency , Toll-Like Receptor 3/genetics , Young Adult
4.
Hum Genet ; 139(6-7): 961-980, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32067109

ABSTRACT

Neisseria meningitidis is a leading cause of bacterial septicaemia and meningitis worldwide. Meningococcal disease is rare but can be life threatening with a tendency to affect children. Many studies have investigated the role of human genetics in predisposition to N. meningitidis infection. These have identified both rare single-gene mutations as well as more common polymorphisms associated with meningococcal disease susceptibility and severity. These findings provide clues to the pathogenesis of N. meningitidis, the basis of host susceptibility to infection and to the aetiology of severe disease. From the multiple discoveries of monogenic complement deficiencies to the associations of complement factor H and complement factor H-related three polymorphisms to meningococcal disease, the complement pathway is highlighted as being central to the genetic control of meningococcal disease. This review aims to summarise the current understanding of the host genetic basis of meningococcal disease with respect to the different stages of meningococcal infection.


Subject(s)
Genetic Predisposition to Disease , Human Genetics , Meningococcal Infections/genetics , Neisseria meningitidis/pathogenicity , Polymorphism, Genetic , Virulence/genetics , Complement Factor H/genetics , Humans , Meningococcal Infections/immunology , Meningococcal Infections/microbiology
5.
Clin Infect Dis ; 70(10): 2045-2053, 2020 05 06.
Article in English | MEDLINE | ID: mdl-31504285

ABSTRACT

BACKGROUND: Neisseria meningitidis (Nm) is a nasopharyngeal commensal carried by healthy individuals. However, invasive infections occurs in a minority of individuals, with devastating consequences. There is evidence that common polymorphisms are associated with invasive meningococcal disease (IMD), but the contributions of rare variants other than those in the complement system have not been determined. METHODS: We identified familial cases of IMD in the UK meningococcal disease study and the European Union Life-Threatening Infectious Disease Study. Candidate genetic variants were identified by whole-exome sequencing of 2 patients with familial IMD. Candidate variants were further validated by in vitro assays. RESULTS: Exomes of 2 siblings with IMD identified a novel heterozygous missense mutation in BPIFA1/SPLUNC1. Sequencing of 186 other nonfamilial cases identified another unrelated IMD patient with the same mutation. SPLUNC1 is an innate immune defense protein expressed in the nasopharyngeal epithelia; however, its role in invasive infections is unknown. In vitro assays demonstrated that recombinant SPLUNC1 protein inhibits biofilm formation by Nm, and impedes Nm adhesion and invasion of human airway cells. The dominant negative mutant recombinant SPLUNC1 (p.G22E) showed reduced antibiofilm activity, increased meningococcal adhesion, and increased invasion of cells, compared with wild-type SPLUNC1. CONCLUSIONS: A mutation in SPLUNC1 affecting mucosal attachment, biofilm formation, and invasion of mucosal epithelial cells is a new genetic cause of meningococcal disease.


Subject(s)
Glycoproteins/genetics , Meningococcal Infections/genetics , Meningococcal Infections/microbiology , Neisseria meningitidis , Phosphoproteins/genetics , Complement System Proteins , Epithelial Cells , Humans , Mutation , Neisseria meningitidis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...