Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Commun Biol ; 4(1): 736, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34127790

ABSTRACT

Aggregates of hyperphosphorylated tau protein are a pathological hallmark of more than 20 distinct neurodegenerative diseases, including Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. While the exact mechanism of tau aggregation is unknown, the accumulation of aggregates correlates with disease progression. Here we report a genome-wide CRISPR screen to identify modulators of endogenous tau protein for the first time. Primary screens performed in SH-SY5Y cells, identified positive and negative regulators of tau protein levels. Hit validation of the top 43 candidate genes was performed using Ngn2-induced human cortical excitatory neurons. Using this approach, genes and pathways involved in modulation of endogenous tau levels were identified, including chromatin modifying enzymes, neddylation and ubiquitin pathway members, and components of the mTOR pathway. TSC1, a critical component of the mTOR pathway, was further validated in vivo, demonstrating the relevance of this screening strategy. These findings may have implications for treating neurodegenerative diseases in the future.


Subject(s)
Metabolic Networks and Pathways/genetics , Neurons/metabolism , tau Proteins/metabolism , Animals , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Cell Line, Tumor , Gene Editing , Genes/genetics , Genes/physiology , Genetic Testing/methods , Genome-Wide Association Study , Humans , Mice , Neuroblastoma/metabolism , Rats , TOR Serine-Threonine Kinases/metabolism
2.
Cell Stem Cell ; 25(1): 39-53.e10, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31080135

ABSTRACT

Biliary epithelial cells (BECs) form bile ducts in the liver and are facultative liver stem cells that establish a ductular reaction (DR) to support liver regeneration following injury. Liver damage induces periportal LGR5+ putative liver stem cells that can form BEC-like organoids, suggesting that RSPO-LGR4/5-mediated WNT/ß-catenin activity is important for a DR. We addressed the roles of this and other signaling pathways in a DR by performing a focused CRISPR-based loss-of-function screen in BEC-like organoids, followed by in vivo validation and single-cell RNA sequencing. We found that BECs lack and do not require LGR4/5-mediated WNT/ß-catenin signaling during a DR, whereas YAP and mTORC1 signaling are required for this process. Upregulation of AXIN2 and LGR5 is required in hepatocytes to enable their regenerative capacity in response to injury. Together, these data highlight heterogeneity within the BEC pool, delineate signaling pathways involved in a DR, and clarify the identity and roles of injury-induced periportal LGR5+ cells.


Subject(s)
Acute Lung Injury/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Bile Ducts/pathology , Cell Cycle Proteins/metabolism , Epithelial Cells/physiology , Induced Pluripotent Stem Cells/physiology , Adaptor Proteins, Signal Transducing/genetics , Animals , Axin Protein/genetics , Axin Protein/metabolism , Cell Cycle Proteins/genetics , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats , Disease Models, Animal , Humans , Liver Regeneration , Male , Mice , Mice, Inbred C57BL , Pyridines/toxicity , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Thrombospondins/genetics , Thrombospondins/metabolism , Wnt Signaling Pathway , YAP-Signaling Proteins
3.
Cell Rep ; 27(2): 616-630.e6, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30970262

ABSTRACT

Human pluripotent stem cells (hPSCs) generate a variety of disease-relevant cells that can be used to improve the translation of preclinical research. Despite the potential of hPSCs, their use for genetic screening has been limited by technical challenges. We developed a scalable and renewable Cas9 and sgRNA-hPSC library in which loss-of-function mutations can be induced at will. Our inducible mutant hPSC library can be used for multiple genome-wide CRISPR screens in a variety of hPSC-induced cell types. As proof of concept, we performed three screens for regulators of properties fundamental to hPSCs: their ability to self-renew and/or survive (fitness), their inability to survive as single-cell clones, and their capacity to differentiate. We identified the majority of known genes and pathways involved in these processes, as well as a plethora of genes with unidentified roles. This resource will increase the understanding of human development and genetics. This approach will be a powerful tool to identify disease-modifying genes and pathways.


Subject(s)
CRISPR-Cas Systems/genetics , Genetic Testing/methods , Genome/genetics , Pluripotent Stem Cells/metabolism , Humans
4.
Methods Mol Biol ; 1888: 153-174, 2019.
Article in English | MEDLINE | ID: mdl-30519946

ABSTRACT

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. It is based on identifying cellular hypersensitivity and resistance caused by individual gene modulations with genome-wide coverage. Due to the requirement of bar-coded, genome-wide deletion collections, high-resolution experiments of this nature have historically been limited to fungal systems. Pooled RNAi reagents have enabled similar attempts in mammalian cells but efforts have been hampered by significant off-target effects and experimental noise. The CRISPR/Cas9 system for the first time enables precise DNA editing at defined loci in a genome-wide fashion. Here we present the detailed protocol that leverages the CRISPR/Cas9 system for chemogenomic profiling and target identification of diverse chemical probes.


Subject(s)
CRISPR-Cas Systems , Gene Expression Profiling , Gene Expression Regulation/drug effects , Genomics , Animals , Cell Line , Cell Survival/drug effects , Cell Survival/genetics , Dose-Response Relationship, Drug , Gene Editing , Gene Expression Profiling/methods , Genetic Vectors/genetics , Genomics/methods , Haploinsufficiency , Humans , Lentivirus/genetics , RNA, Guide, Kinetoplastida
5.
EMBO Rep ; 19(9)2018 09.
Article in English | MEDLINE | ID: mdl-30126924

ABSTRACT

Autophagy maintains cellular homeostasis by targeting damaged organelles, pathogens, or misfolded protein aggregates for lysosomal degradation. The autophagic process is initiated by the formation of autophagosomes, which can selectively enclose cargo via autophagy cargo receptors. A machinery of well-characterized autophagy-related proteins orchestrates the biogenesis of autophagosomes; however, the origin of the required membranes is incompletely understood. Here, we have applied sensitized pooled CRISPR screens and identify the uncharacterized transmembrane protein TMEM41B as a novel regulator of autophagy. In the absence of TMEM41B, autophagosome biogenesis is stalled, LC3 accumulates at WIPI2- and DFCP1-positive isolation membranes, and lysosomal flux of autophagy cargo receptors and intracellular bacteria is impaired. In addition to defective autophagy, TMEM41B knockout cells display significantly enlarged lipid droplets and reduced mobilization and ß-oxidation of fatty acids. Immunostaining and interaction proteomics data suggest that TMEM41B localizes to the endoplasmic reticulum (ER). Taken together, we propose that TMEM41B is a novel ER-localized regulator of autophagosome biogenesis and lipid mobilization.


Subject(s)
Autophagy/physiology , Lipid Mobilization/physiology , Membrane Proteins/genetics , Membrane Proteins/physiology , Autophagosomes/metabolism , Autophagy/genetics , Autophagy-Related Proteins/metabolism , CRISPR-Associated Protein 9/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats/physiology , Endoplasmic Reticulum/metabolism , Fatty Acids/metabolism , Gene Knockout Techniques , HeLa Cells , Homeostasis , Humans , Lentivirus , Lipid Droplets/metabolism , Lipid Mobilization/genetics , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism
6.
Nat Med ; 24(7): 939-946, 2018 07.
Article in English | MEDLINE | ID: mdl-29892062

ABSTRACT

CRISPR/Cas9 has revolutionized our ability to engineer genomes and conduct genome-wide screens in human cells1-3. Whereas some cell types are amenable to genome engineering, genomes of human pluripotent stem cells (hPSCs) have been difficult to engineer, with reduced efficiencies relative to tumour cell lines or mouse embryonic stem cells3-13. Here, using hPSC lines with stable integration of Cas9 or transient delivery of Cas9-ribonucleoproteins (RNPs), we achieved an average insertion or deletion (indel) efficiency greater than 80%. This high efficiency of indel generation revealed that double-strand breaks (DSBs) induced by Cas9 are toxic and kill most hPSCs. In previous studies, the toxicity of Cas9 in hPSCs was less apparent because of low transfection efficiency and subsequently low DSB induction3. The toxic response to DSBs was P53/TP53-dependent, such that the efficiency of precise genome engineering in hPSCs with a wild-type P53 gene was severely reduced. Our results indicate that Cas9 toxicity creates an obstacle to the high-throughput use of CRISPR/Cas9 for genome engineering and screening in hPSCs. Moreover, as hPSCs can acquire P53 mutations14, cell replacement therapies using CRISPR/Cas9-enginereed hPSCs should proceed with caution, and such engineered hPSCs should be monitored for P53 function.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , Genetic Engineering , Pluripotent Stem Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Breaks, Double-Stranded , Gene Deletion , Humans , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic , fas Receptor/genetics , fas Receptor/metabolism
7.
J Cell Biol ; 217(6): 1941-1955, 2018 06 04.
Article in English | MEDLINE | ID: mdl-29588376

ABSTRACT

The multiciliated cell (MCC) is an evolutionarily conserved cell type, which in vertebrates functions to promote directional fluid flow across epithelial tissues. In the conducting airway, MCCs are generated by basal stem/progenitor cells and act in concert with secretory cells to perform mucociliary clearance to expel pathogens from the lung. Studies in multiple systems, including Xenopus laevis epidermis, murine trachea, and zebrafish kidney, have uncovered a transcriptional network that regulates multiple steps of multiciliogenesis, ultimately leading to an MCC with hundreds of motile cilia extended from their apical surface, which beat in a coordinated fashion. Here, we used a pool-based short hairpin RNA screening approach and identified TRRAP, an essential component of multiple histone acetyltransferase complexes, as a central regulator of MCC formation. Using a combination of immunofluorescence, signaling pathway modulation, and genomic approaches, we show that (a) TRRAP acts downstream of the Notch2-mediated basal progenitor cell fate decision and upstream of Multicilin to control MCC differentiation; and (b) TRRAP binds to the promoters and regulates the expression of a network of genes involved in MCC differentiation and function, including several genes associated with human ciliopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cilia/metabolism , Nuclear Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Line , Cell Lineage , Epigenesis, Genetic , Epithelial Cells/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Humans , Lung/cytology , RNA, Small Interfering/metabolism , Receptor, Notch2 , Signal Transduction , Transcription Factors
8.
Proc Natl Acad Sci U S A ; 115(2): E180-E189, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29269392

ABSTRACT

PARKIN, an E3 ligase mutated in familial Parkinson's disease, promotes mitophagy by ubiquitinating mitochondrial proteins for efficient engagement of the autophagy machinery. Specifically, PARKIN-synthesized ubiquitin chains represent targets for the PINK1 kinase generating phosphoS65-ubiquitin (pUb), which constitutes the mitophagy signal. Physiological regulation of PARKIN abundance, however, and the impact on pUb accumulation are poorly understood. Using cells designed to discover physiological regulators of PARKIN abundance, we performed a pooled genome-wide CRISPR/Cas9 knockout screen. Testing identified genes individually resulted in a list of 53 positive and negative regulators. A transcriptional repressor network including THAP11 was identified and negatively regulates endogenous PARKIN abundance. RNAseq analysis revealed the PARKIN-encoding locus as a prime THAP11 target, and THAP11 CRISPR knockout in multiple cell types enhanced pUb accumulation. Thus, our work demonstrates the critical role of PARKIN abundance, identifies regulating genes, and reveals a link between transcriptional repression and mitophagy, which is also apparent in human induced pluripotent stem cell-derived neurons, a disease-relevant cell type.


Subject(s)
CRISPR-Cas Systems , Gene Expression Regulation , Genome, Human/genetics , Mitophagy/genetics , Repressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Cell Line, Tumor , Cells, Cultured , HCT116 Cells , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Infant, Newborn , Neurons/metabolism , Phosphorylation , Protein Kinases/genetics , Protein Kinases/metabolism , Repressor Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism
9.
Cell ; 170(3): 577-592.e10, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753431

ABSTRACT

Elucidation of the mutational landscape of human cancer has progressed rapidly and been accompanied by the development of therapeutics targeting mutant oncogenes. However, a comprehensive mapping of cancer dependencies has lagged behind and the discovery of therapeutic targets for counteracting tumor suppressor gene loss is needed. To identify vulnerabilities relevant to specific cancer subtypes, we conducted a large-scale RNAi screen in which viability effects of mRNA knockdown were assessed for 7,837 genes using an average of 20 shRNAs per gene in 398 cancer cell lines. We describe findings of this screen, outlining the classes of cancer dependency genes and their relationships to genetic, expression, and lineage features. In addition, we describe robust gene-interaction networks recapitulating both protein complexes and functional cooperation among complexes and pathways. This dataset along with a web portal is provided to the community to assist in the discovery and translation of new therapeutic approaches for cancer.


Subject(s)
Neoplasms/genetics , Neoplasms/pathology , RNA Interference , Cell Line, Tumor , Gene Library , Gene Regulatory Networks , Humans , Multiprotein Complexes/metabolism , Neoplasms/metabolism , Oncogenes , RNA, Small Interfering , Signal Transduction , Transcription Factors/metabolism
10.
Sci Rep ; 7: 42728, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28205648

ABSTRACT

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.


Subject(s)
CRISPR-Cas Systems , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Cells, Cultured , Enzyme Inhibitors/chemistry , Gene Deletion , Humans , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Nicotinamide Phosphoribosyltransferase/genetics , Pharmacogenomic Testing/methods
11.
Mol Cell ; 63(4): 633-646, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27499295

ABSTRACT

The repair outcomes at site-specific DNA double-strand breaks (DSBs) generated by the RNA-guided DNA endonuclease Cas9 determine how gene function is altered. Despite the widespread adoption of CRISPR-Cas9 technology to induce DSBs for genome engineering, the resulting repair products have not been examined in depth. Here, the DNA repair profiles of 223 sites in the human genome demonstrate that the pattern of DNA repair following Cas9 cutting at each site is nonrandom and consistent across experimental replicates, cell lines, and reagent delivery methods. Furthermore, the repair outcomes are determined by the protospacer sequence rather than genomic context, indicating that DNA repair profiling in cell lines can be used to anticipate repair outcomes in primary cells. Chemical inhibition of DNA-PK enabled dissection of the DNA repair profiles into contributions from c-NHEJ and MMEJ. Finally, this work elucidates a strategy for using "error-prone" DNA-repair machinery to generate precise edits.


Subject(s)
Bacterial Proteins/metabolism , CRISPR-Cas Systems , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Endonucleases/metabolism , Gene Editing , Gene Expression Profiling/methods , Bacterial Proteins/genetics , CRISPR-Associated Protein 9 , Endonucleases/genetics , HCT116 Cells , HEK293 Cells , Humans , K562 Cells , RNA Interference , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , Time Factors , Transfection
12.
Elife ; 52016 06 28.
Article in English | MEDLINE | ID: mdl-27351204

ABSTRACT

SQSTM1 is an adaptor protein that integrates multiple cellular signaling pathways and whose expression is tightly regulated at the transcriptional and post-translational level. Here, we describe a forward genetic screening paradigm exploiting CRISPR-mediated genome editing coupled to a cell selection step by FACS to identify regulators of SQSTM1. Through systematic comparison of pooled libraries, we show that CRISPR is superior to RNAi in identifying known SQSTM1 modulators. A genome-wide CRISPR screen exposed MTOR signalling and the entire macroautophagy machinery as key regulators of SQSTM1 and identified several novel modulators including HNRNPM, SLC39A14, SRRD, PGK1 and the ufmylation cascade. We show that ufmylation regulates SQSTM1 by eliciting a cell type-specific ER stress response which induces SQSTM1 expression and results in its accumulation in the cytosol. This study validates pooled CRISPR screening as a powerful method to map the repertoire of cellular pathways that regulate the fate of an individual target protein.


Subject(s)
Gene Expression Regulation , Protein Processing, Post-Translational , Proteins/metabolism , Sequestosome-1 Protein/metabolism , Autophagy , Cell Line , Clustered Regularly Interspaced Short Palindromic Repeats , Flow Cytometry , Gene Targeting , Genetic Testing , Humans , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
13.
Science ; 351(6278): 1208-13, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26912361

ABSTRACT

5-Methylthioadenosine phosphorylase (MTAP) is a key enzyme in the methionine salvage pathway. The MTAP gene is frequently deleted in human cancers because of its chromosomal proximity to the tumor suppressor gene CDKN2A. By interrogating data from a large-scale short hairpin RNA-mediated screen across 390 cancer cell line models, we found that the viability of MTAP-deficient cancer cells is impaired by depletion of the protein arginine methyltransferase PRMT5. MTAP-deleted cells accumulate the metabolite methylthioadenosine (MTA), which we found to inhibit PRMT5 methyltransferase activity. Deletion of MTAP in MTAP-proficient cells rendered them sensitive to PRMT5 depletion. Conversely, reconstitution of MTAP in an MTAP-deficient cell line rescued PRMT5 dependence. Thus, MTA accumulation in MTAP-deleted cancers creates a hypomorphic PRMT5 state that is selectively sensitized toward further PRMT5 inhibition. Inhibitors of PRMT5 that leverage this dysregulated metabolic state merit further investigation as a potential therapy for MTAP/CDKN2A-deleted tumors.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16/metabolism , Methionine/metabolism , Neoplasms/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Cell Line, Tumor , Cell Survival , Cyclin-Dependent Kinase Inhibitor p16/genetics , Deoxyadenosines/metabolism , Gene Deletion , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Protein-Arginine N-Methyltransferases/genetics , Purine-Nucleoside Phosphorylase/genetics , RNA, Small Interfering/genetics , Thionucleosides/metabolism
14.
Proc Natl Acad Sci U S A ; 113(1): 182-7, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26677873

ABSTRACT

Macroautophagy is a key stress-response pathway that can suppress or promote tumorigenesis depending on the cellular context. Notably, Kirsten rat sarcoma (KRAS)-driven tumors have been reported to rely on macroautophagy for growth and survival, suggesting a potential therapeutic approach of using autophagy inhibitors based on genetic stratification. In this study, we evaluated whether KRAS mutation status can predict the efficacy to macroautophagy inhibition. By profiling 47 cell lines with pharmacological and genetic loss-of-function tools, we were unable to confirm that KRAS-driven tumor lines require macroautophagy for growth. Deletion of autophagy-related 7 (ATG7) by genome editing completely blocked macroautophagy in several tumor lines with oncogenic mutations in KRAS but did not inhibit cell proliferation in vitro or tumorigenesis in vivo. Furthermore, ATG7 knockout did not sensitize cells to irradiation or to several anticancer agents tested. Interestingly, ATG7-deficient and -proficient cells were equally sensitive to the antiproliferative effect of chloroquine, a lysosomotropic agent often used as a pharmacological tool to evaluate the response to macroautophagy inhibition. Moreover, both cell types manifested synergistic growth inhibition when treated with chloroquine plus the tyrosine kinase inhibitors erlotinib or sunitinib, suggesting that the antiproliferative effects of chloroquine are independent of its suppressive actions on autophagy.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cell Transformation, Neoplastic/drug effects , Chloroquine/pharmacology , Drug Resistance, Neoplasm/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Autophagy/genetics , Autophagy-Related Protein 7 , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Erlotinib Hydrochloride/pharmacology , Gene Knockout Techniques , Humans , Indoles/pharmacology , Mutation , Protein Kinase Inhibitors/pharmacology , Pyrroles/pharmacology , Radiation Tolerance/genetics , Sunitinib , Ubiquitin-Activating Enzymes/genetics
15.
Proc Natl Acad Sci U S A ; 112(1): E21-9, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25524627

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) integrates multiple signals from growth factors, nutrients, and cellular energy status to control a wide range of metabolic processes, including mRNA biogenesis; protein, nucleotide, and lipid synthesis; and autophagy. Deregulation of the mTORC1 pathway is found in cancer as well as genetic disorders such as tuberous sclerosis complex (TSC) and sporadic lymphangioleiomyomatosis. Recent studies have shown that the mTORC1 inhibitor rapamycin and its analogs generally suppress proliferation rather than induce apoptosis. Therefore, it is critical to use alternative strategies to induce death of cells with activated mTORC1. In this study, a small-molecule screen has revealed that the combination of glutaminase (GLS) and heat shock protein 90 (Hsp90) inhibitors selectively triggers death of TSC2-deficient cells. At a mechanistic level, high mTORC1-driven translation rates in TSC1/2-deficient cells, unlike wild-type cells, sensitizes these cells to endoplasmic reticulum (ER) stress. Thus, Hsp90 inhibition drives accumulation of unfolded protein and ER stress. When combining proteotoxic stress with oxidative stress by depletion of the intracellular antioxidant glutathione by GLS inhibition, acute cell death is observed in cells with activated mTORC1 signaling. This study suggests that this combination strategy may have the potential to be developed into a therapeutic use for the treatment of mTORC1-driven tumors.


Subject(s)
Glutaminase/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Tuberous Sclerosis/metabolism , Tuberous Sclerosis/pathology , Animals , Apoptosis/drug effects , Benzoquinones/pharmacology , Cell Line, Tumor , Cell Shape/drug effects , Cell Survival/drug effects , Glutamate Dehydrogenase/antagonists & inhibitors , Glutamate Dehydrogenase/metabolism , Glutaminase/metabolism , Glutamine/metabolism , HSP90 Heat-Shock Proteins/metabolism , Humans , Lactams, Macrocyclic/pharmacology , Mechanistic Target of Rapamycin Complex 1 , Mice , Models, Biological , Oxidation-Reduction/drug effects , Phenotype , Sirolimus/pharmacology , Small Molecule Libraries/pharmacology , Sulfides/pharmacology , Thiadiazoles/pharmacology , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays
16.
Proc Natl Acad Sci U S A ; 111(8): 3128-33, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24520176

ABSTRACT

Defects in epigenetic regulation play a fundamental role in the development of cancer, and epigenetic regulators have recently emerged as promising therapeutic candidates. We therefore set out to systematically interrogate epigenetic cancer dependencies by screening an epigenome-focused deep-coverage design shRNA (DECODER) library across 58 cancer cell lines. This screen identified BRM/SMARCA2, a DNA-dependent ATPase of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex, as being essential for the growth of tumor cells that harbor loss of function mutations in BRG1/SMARCA4. Depletion of BRM in BRG1-deficient cancer cells leads to a cell cycle arrest, induction of senescence, and increased levels of global H3K9me3. We further demonstrate the selective dependency of BRG1-mutant tumors on BRM in vivo. Genetic alterations of the mSWI/SNF chromatin remodeling complexes are the most frequent among chromatin regulators in cancers, with BRG1/SMARCA4 mutations occurring in ∼10-15% of lung adenocarcinomas. Our findings position BRM as an attractive therapeutic target for BRG1 mutated cancers. Because BRG1 and BRM function as mutually exclusive catalytic subunits of the mSWI/SNF complex, we propose that such synthetic lethality may be explained by paralog insufficiency, in which loss of one family member unveils critical dependence on paralogous subunits. This concept of "cancer-selective paralog dependency" may provide a more general strategy for targeting other tumor suppressor lesions/complexes with paralogous subunits.


Subject(s)
DNA Helicases/deficiency , Epigenesis, Genetic/physiology , Multiprotein Complexes/genetics , Neoplasms/genetics , Nuclear Proteins/deficiency , Transcription Factors/deficiency , Transcription Factors/genetics , Blotting, Western , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cellular Senescence/genetics , Gene Knockdown Techniques , Gene Library , Histones/metabolism , Humans , Immunoprecipitation , Multiprotein Complexes/metabolism , RNA, Small Interfering/genetics , Transcription Factors/metabolism
17.
Mol Cell ; 49(1): 172-85, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23142078

ABSTRACT

The metabolism of glucose and glutamine, primary carbon sources utilized by mitochondria to generate energy and macromolecules for cell growth, is directly regulated by mTORC1. We show that glucose and glutamine, by supplying carbons to the TCA cycle to produce ATP, positively feed back to mTORC1 through an AMPK-, TSC1/2-, and Rag-independent mechanism by regulating mTORC1 assembly and its lysosomal localization. We discovered that the ATP-dependent TTT-RUVBL1/2 complex was disassembled and repressed by energy depletion, resulting in its decreased interaction with mTOR. The TTT-RUVBL complex was necessary for the interaction between mTORC1 and Rag and formation of mTORC1 obligate dimers. In cancer tissues, TTT-RUVBL complex mRNAs were elevated and positively correlated with transcripts encoding proteins of anabolic metabolism and mitochondrial function-all mTORC1-regulated processes. Thus, the TTT-RUVBL1/2 complex responds to the cell's metabolic state, directly regulating the functional assembly of mTORC1 and indirectly controlling the nutrient signal from Rags to mTORC1.


Subject(s)
Energy Metabolism , Lysosomes/metabolism , Proteins/metabolism , Stress, Physiological , ATPases Associated with Diverse Cellular Activities , Adenosine Triphosphate/metabolism , Adenylate Kinase/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinoma/genetics , Carcinoma/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Citric Acid Cycle , DNA Helicases/genetics , DNA Helicases/metabolism , Female , Glucose/deficiency , Glutamine/deficiency , Humans , Intracellular Signaling Peptides and Proteins , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes , Protein Binding , Protein Multimerization , Protein Transport , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Signal Transduction , Statistics, Nonparametric , TOR Serine-Threonine Kinases , Telomere-Binding Proteins/genetics , Telomere-Binding Proteins/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
18.
Science ; 332(6035): 1322-6, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21659605

ABSTRACT

The evolutionarily conserved serine-threonine kinase mammalian target of rapamycin (mTOR) plays a critical role in regulating many pathophysiological processes. Functional characterization of the mTOR signaling pathways, however, has been hampered by the paucity of known substrates. We used large-scale quantitative phosphoproteomics experiments to define the signaling networks downstream of mTORC1 and mTORC2. Characterization of one mTORC1 substrate, the growth factor receptor-bound protein 10 (Grb10), showed that mTORC1-mediated phosphorylation stabilized Grb10, leading to feedback inhibition of the phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated, mitogen-activated protein kinase (ERK-MAPK) pathways. Grb10 expression is frequently down-regulated in various cancers, and loss of Grb10 and loss of the well-established tumor suppressor phosphatase PTEN appear to be mutually exclusive events, suggesting that Grb10 might be a tumor suppressor regulated by mTORC1.


Subject(s)
GRB10 Adaptor Protein/metabolism , Insulin/metabolism , Proteins/metabolism , Signal Transduction , Amino Acid Sequence , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Line , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Molecular Sequence Data , Multiprotein Complexes , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/metabolism , Phosphorylation/drug effects , Proteome/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , TOR Serine-Threonine Kinases
19.
Curr Protoc Chem Biol ; 3(1): 39-52, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-23836588

ABSTRACT

The in-cell western (ICW) technique is a cell-based immunoassay method for quantitative measurement of protein expression or phosphorylation levels that can be used for both small molecule and siRNA screening. The method involves growth of cells in microplates, fixation, permeabilization, and staining with specific antibodies and/or cell labeling dyes. ICW assays take advantage of the properties of near-infrared dyes to achieve higher signal-to-noise ratios than are possible for methods utilizing fluorophores in the visible range of the spectrum, and typically involve measurements using two fluorescent channels: one to measure levels of the target of interest, and one to measure total cell number for normalization. The ICW method is readily adaptable to high-throughput format and has been successfully used with a variety of targets and cell lines. The protocols in this unit describe an ICW procedure for quantitative measurement of rpS6-phosphorylation as an endpoint for monitoring mTORC1 signaling in HeLa cells. This assay can be used for small molecule or siRNA screening, and with modification is adaptable to other cell lines and targets. Curr. Protoc. Chem. Biol. 3:39-52 © 2011 by John Wiley & Sons, Inc.

20.
Assay Drug Dev Technol ; 8(2): 186-99, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20085456

ABSTRACT

The mTORC1 pathway is a central regulator of cell growth, and defective mTORC1 regulation plays a causative role in a variety of human diseases, including cancer, tumor syndromes such as the tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM), and metabolic diseases such as diabetes and obesity. Given the importance of mTORC1 signaling in these diseases, there has been significant interest in developing screening methods suitable for identifying inhibitors of mTORC1 activation. To this end, we have developed a high-throughput, cell-based assay for the detection of rpS6-phosphorylation as a measure of mTORC1 signaling. This assay takes advantage of the "In Cell Western" (ICW) technique using the Aerius infrared imaging system (LI-COR Biosciences). The ICW procedure involves fixation and immunostaining of cells in a manner similar to standard immunofluorescence methods but takes advantage of secondary antibodies conjugated to infrared-excitable fluorophores for quantitative detection by the Aerius scanner. In addition, the cells are stained with an infrared-excitable succinimidyl ester dye, which covalently modifies free amine groups in fixed cells and provides a quantitative measure of cell number. We present validation data and pilot screens in a 384-well format demonstrating that this assay provides a statistically robust method for both small molecule and siRNA screening approaches designed to identify inhibitors of mTORC1 signaling.


Subject(s)
RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors , Amines/chemistry , Amines/radiation effects , Antibody Specificity , Blotting, Western , Cell Count , Cell Survival , Drug Evaluation, Preclinical , Endpoint Determination , Fluorescent Antibody Technique, Indirect , HeLa Cells , Humans , Infrared Rays , Mechanistic Target of Rapamycin Complex 1 , Multiprotein Complexes , Proteins , Reproducibility of Results , Small Molecule Libraries , TOR Serine-Threonine Kinases , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...