Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
ChemMedChem ; 18(16): e202300182, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37377066

ABSTRACT

We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.


Subject(s)
Influenza, Human , Molecular Dynamics Simulation , Humans , Antiviral Agents/chemistry , Amines/pharmacology , Protons , Mutation , Influenza, Human/drug therapy , Amantadine/pharmacology , Amantadine/therapeutic use , Viral Matrix Proteins/chemistry , Drug Resistance, Viral
2.
Pain ; 164(11): 2528-2539, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37289573

ABSTRACT

ABSTRACT: Chronic pelvic pain (CPP), despite its high prevalence, is still relatively poorly understood mechanistically. This study, as part of the Translational Research in Pelvic Pain (TRiPP) project, has used a full quantitative sensory testing (QST) paradigm to profile n = 85 women with and without CPP (endometriosis or bladder pain specifically). We used the foot as a control site and abdomen as the test site. Across 5 diagnostically determined subgroups, we found features which are common across different aetiologies, eg, gain of function in pressure pain threshold (PPT) when assessing responses from the lower abdomen or pelvis (referred pain site). However, disease-specific phenotypes were also identified, eg, greater mechanical allodynia in endometriosis, despite there being large heterogeneities within diagnostic groups. The most common QST sensory phenotype was mechanical hyperalgesia (>50% across all the groups). A "healthy' sensory phenotype was seen in <7% of CPP participants. Specific QST measures correlated with sensory symptoms assessed by the painDETECT questionnaire (pressure-evoked pain [painDETECT] and PPT [QST] [ r = 0.47, P < 0.001]; mechanical hyperalgesia (painDETECT) and mechanical pain sensitivity [MPS from QST] [ r = 0.38, P = 0.009]). The data suggest that participants with CPP are sensitive to both deep tissue and cutaneous inputs, suggesting that central mechanisms may be important in this cohort. We also see phenotypes such as thermal hyperalgesia, which may be the result of peripheral mechanisms, such as irritable nociceptors. This highlights the importance of stratifying patients into clinically meaningful phenotypes, which may have implications for the development of better therapeutic strategies for CPP.


Subject(s)
Chronic Pain , Endometriosis , Humans , Female , Hyperalgesia , Pain Measurement/methods , Translational Research, Biomedical , Pain Threshold/physiology , Pelvic Pain , Chronic Pain/diagnosis
3.
Article in English | MEDLINE | ID: mdl-37052767

ABSTRACT

BACKGROUND: The colonization of skin with pathogenic, partially antibiotic-resistant bacteria is frequently a severe problem in dermatological therapies. For instance, skin colonization with Staphylococcus aureus is even a disease-promoting factor in atopic dermatitis. The photodynamic inactivation (PDI) of bacteria could be a new antibacterial procedure. Upon irradiation with visible light, a special photosensitizer exclusively generates singlet oxygen. This reactive oxygen species kills bacteria via oxidation independent of species or strain and their antibiotic resistance profile causing no bacterial resistance on its part. OBJECTIVE: To investigate the antibacterial potential of a photosensitizer, formulated in a new hydrogel, on human skin ex vivo. METHODS: The photochemical stability of the photosensitizer and its ability to generate singlet oxygen in the hydrogel was studied. Antimicrobial efficacy of this hydrogel was tested step by step, firstly on inanimate surfaces and then on human skin ex vivo against S. aureus and Pseudomonas aeruginosa using standard colony counting. NBTC staining and TUNEL assays were performed on skin biopsies to investigate potential necrosis and apoptosis effects in skin cells possibly caused by PDI. RESULTS: None of the hydrogel components affected the photochemical stability and the life time of singlet oxygen. On inanimate surfaces as well as on the human skin, the number of viable bacteria was reduced by up to 4.8 log10 being more effective than most other antibacterial topical agents. Histology and assays showed that PDI against bacteria on the skin surface caused no harmful effects on the underlying skin cells. CONCLUSION: Photodynamic inactivation hydrogel proved to be effective for decolonization of human skin including the potential to act against superficial skin infections. Being a water-based formulation, the hydrogel should be also suitable for the mucosa. The results of the present ex vivo study form a good basis for conducting clinical studies in vivo.

5.
Photochem Photobiol ; 99(2): 716-731, 2023 03.
Article in English | MEDLINE | ID: mdl-36004389

ABSTRACT

Many studies show that photodynamic inactivation (PDI) is a powerful tool for the fight against pathogenic, multiresistant bacteria and the closing of hygiene gaps. However, PDI studies have been frequently performed under standardized in vitro conditions comprising artificial laboratory settings. Under real-life conditions, however, PDI encounters substances like ions, proteins, amino acids and fatty acids, potentially hampering the efficacy of PDI to an unpredictable extent. Thus, we investigated PDI with the phenalene-1-one-based photosensitizer SAPYR against Escherichia coli and Staphylococcus aureus in the presence of calcium or magnesium ions, which are ubiquitous in potential fields of PDI applications like in tap water or on tissue surfaces. The addition of citrate should elucidate the potential as a chelator. The results indicate that PDI is clearly affected by such ubiquitous ions depending on its concentration and the type of bacteria. The application of citrate enhanced PDI, especially for Gram-negative bacteria at certain ionic concentrations (e.g. CaCl2 or MgCl2 : 7.5 to 75 mmol L-1 ). Citrate also improved PDI efficacy in tap water (especially for Gram-negative bacteria) and synthetic sweat solution (especially for Gram-positive bacteria). In conclusion, the use of chelating agents like citrate may facilitate the application of PDI under real-life conditions.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/chemistry , Citric Acid/pharmacology , Chelating Agents/pharmacology , Staphylococcus aureus , Citrates/pharmacology , Water , Photochemotherapy/methods
6.
Sci Total Environ ; 858(Pt 1): 159433, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36244489

ABSTRACT

Fatal dog poisoning after uptake of neurotoxic cyanobacteria associated with aquatic macrophytes in Tegeler See (Berlin, Germany) raised concerns about critical exposure of humans, especially children, to cyanotoxins produced by macrophyte associated cyanobacteria during recreational activity. From 2017 to 2021 a total of 398 samples of macrophytes washed ashore at bathing sites located at 19 Berlin lakes were analysed for anatoxins, microcystins, and cylindrospermopsins, as were 463 water samples taken in direct proximity to macrophyte accumulations. Cyanotoxins were detected in 66 % of macrophyte samples and 50 % of water samples, with anatoxins being the most frequently detected toxin group in macrophyte samples (58 %) and cylindrospermopsins in water samples (41 %). Microcoleus sp. associated with the water moss Fontinalis antipyretica was identified as anatoxin producing cyanobacterium in isolated strains as well as in field samples from Tegeler See. Anatoxin contents in macrophyte samples rarely exceeded 1 µg/g macrophyte fresh weight and peaked at 9. 2 µg/g f.w. Based on established toxicological points of departure, a critical anatoxin content of macrophyte samples of 3 µg/g f.w. is proposed. Five samples, all taken in Tegeler See and all associated with the water moss Fontinalis antipyretica, exceeded this value. Contents and concentrations of microcystins and cylindrospermopsins did not reach critical levels. The potential exposure risks to anatoxins for children and dogs are assessed and recommendations are given.


Subject(s)
Bacterial Toxins , Cyanobacteria , Child , Humans , Dogs , Animals , Microcystins/analysis , Cyanobacteria Toxins , Berlin , Bacterial Toxins/analysis , Risk Assessment , Water/analysis
7.
Mol Plant ; 15(2): 363-371, 2022 02 07.
Article in English | MEDLINE | ID: mdl-34848348

ABSTRACT

Seed size critically affects grain yield of crops and hence represents a key breeding target. The development of embryo-nourishing endosperm is a key driver of seed expansion. We here report unexpected dual roles of the transcription factor EIN3 in regulating seed size. These EIN3 functions have remained largely undiscovered because they oppose each other. Capitalizing on the analysis of multiple ethylene biosynthesis mutants, we demonstrate that EIN3 represses endosperm and seed development in a pathway regulated by ethylene. We, in addition, provide evidence that EIN3-mediated synergid nucleus disintegration promotes endosperm expansion. Interestingly, synergid nucleus disintegration is not affected in various ethylene biosynthesis mutants, suggesting that this promoting function of EIN3 is independent of ethylene. Whereas the growth-inhibitory ethylene-dependent EIN3 action appears to be encoded by sporophytic tissue, the growth-promoting role of EIN3 is induced by fertilization, revealing a generation conflict that converges toward the key signaling component EIN3.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA-Binding Proteins/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Breeding , Seeds/genetics , Seeds/metabolism
8.
Cancers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638268

ABSTRACT

Clinical translation of novel immunotherapeutic strategies such as chimeric antigen receptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges include immune escape and disease relapse demanding for further improvements in CAR design. To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily inactive as they express an extracellular short peptide epitope incapable of recognizing surface antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be achieved using the RevCAR platform. These accomplishments pave the way towards an improved and personalized immunotherapy for AML patients.

9.
J Cyst Fibros ; 20(6): 1018-1025, 2021 11.
Article in English | MEDLINE | ID: mdl-34419414

ABSTRACT

BACKGROUND: Riociguat is a first-in-class soluble guanylate cyclase stimulator for which preclinical data suggested improvements in cystic fibrosis transmembrane conductance regulator (CFTR) function. METHODS: This international, multicenter, two-part, Phase II study of riociguat enrolled adults with cystic fibrosis (CF) homozygous for Phe508del CFTR. Part 1 was a 28-day, randomized, double-blind, placebo-controlled study in participants not receiving CFTR modulator therapy. Twenty-one participants were randomized 1:2 to placebo or oral riociguat (0.5 mg three times daily [tid] for 14 days, increased to 1.0 mg tid for the subsequent 14 days). The primary and secondary efficacy endpoints were change in sweat chloride concentration and percent predicted forced expiratory volume in 1 second (ppFEV1), respectively, from baseline to Day 14 and Day 28 with riociguat compared with placebo. RESULTS: Riociguat did not alter CFTR activity (change in sweat chloride) or lung function (change in ppFEV1) at doses up to 1.0 mg tid after 28 days. The most common drug-related adverse event (AE) was headache occurring in three participants (21%); serious AEs occurred in one participant receiving riociguat (7%) and one participant receiving placebo (14%). This safety profile was consistent with the underlying disease and the known safety of riociguat for its approved indications. CONCLUSIONS: The Rio-CF study was terminated due to lack of efficacy and the changing landscape of CF therapeutic development. The current study⁠, within its limits of a small sample size, did not provide evidence that riociguat could be a valid treatment option for CF. CLINICAL TRIAL REGISTRATION NUMBER: NCT02170025.


Subject(s)
Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Enzyme Activators/therapeutic use , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Adult , Cystic Fibrosis Transmembrane Conductance Regulator , Double-Blind Method , Female , Homozygote , Humans , Male
10.
Pain ; 162(9): 2349-2365, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34448751

ABSTRACT

ABSTRACT: Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.


Subject(s)
Cystitis, Interstitial , Endometriosis , Cystitis, Interstitial/therapy , Female , Humans , Pelvic Pain/therapy , Reproducibility of Results , Translational Research, Biomedical
11.
Drug Dev Ind Pharm ; 46(11): 1753-1762, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33006298

ABSTRACT

OBJECTIVE: Probiotic bacteria, such as different lactobacilli strains, have successfully been used to treat gingivitis and periodontitis or caries. By formulating probiotics as orodispersible tablet (ODT), the benefits of this dosage form could be utilized. Without any further measures, the probiotic bacteria will be eliminated too fast from the intended site of action, the oral mucosa. The use of mucoadhesive granules, composed of mucoadhesive polymer and probiotics, is a promising strategy to prolong the contact time between lactobacilli and oral mucosa without delaying disintegration. METHODS: Three common mucoadhesive polymers, anionic Carbopol 971P NF, nonionic Metolose 65SH50 and cationic chitosan were included into tablets either by direct compression (DC) or after granulation with the probiotics. Disintegration, mucoadhesion of the tablets, and storage stability of the probiotics were characterized. RESULTS: By incorporating a sufficient amount of polymer superior probiotic mucoadhesion could be achieved. All formulations based on granulated probiotics and mucoadhesive polymer fulfilled the Food and Drug Administration (FDA) acceptance level for disintegration of orodispersible tablets. These formulations exhibited excellent storage stability under refrigerated conditions over 30 months. Interestingly, ODTs including Carbopol 971P NF still proved superior mucoadhesion after long-term storage, whereas the mucoadhesive effect of Metolose 65SH50 and chitosan declined markedly. CONCLUSIONS: The results of this study suggest that Carbopol 971P NF was the most appropriate polymer for a probiotic mucoadhesive ODT.


Subject(s)
Polymers/chemistry , Probiotics , Adhesiveness , Administration, Buccal , Mouth Mucosa/drug effects , Tablets
12.
Oncoimmunology ; 9(1): 1785608, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32923149

ABSTRACT

Chimeric antigen receptor (CAR) T cells show remarkable therapeutic effects in some hematological malignancies. However, CAR T cells can also cause life-threatening side effects. In order to minimize off-target and on-target/off-tumor reactions, improve safety, enable controllability, provide high flexibility, and increase tumor specificity, we established a novel humanized artificial receptor platform termed RevCARs. RevCAR genes encode for small surface receptors lacking any antigen-binding moiety. Steering of RevCAR T cells occurs via bispecific targeting molecules (TMs). The small size of RevCAR-encoding genes allows the construction of polycistronic vectors. Here, we demonstrate that RevCAR T cells efficiently kill tumor cells, can be steered by TMs, flexibly redirected against multiple targets, and used for combinatorial targeting following the "OR" and "AND" gate logic.


Subject(s)
Receptors, Chimeric Antigen , Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , T-Lymphocytes
13.
ACS Chem Biol ; 15(9): 2331-2337, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32786258

ABSTRACT

We report on using the synthetic aminoadamantane-CH2-aryl derivatives 1-6 as sensitive probes for blocking M2 S31N and influenza A virus (IAV) M2 wild-type (WT) channels as well as virus replication in cell culture. The binding kinetics measured using electrophysiology (EP) for M2 S31N channel are very dependent on the length between the adamantane moiety and the first ring of the aryl headgroup realized in 2 and 3 and the girth and length of the adamantane adduct realized in 4 and 5. Study of 1-6 shows that, according to molecular dynamics (MD) simulations and molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculations, all bind in the M2 S31N channel with the adamantyl group positioned between V27 and G34 and the aryl group projecting out of the channel with the phenyl (or isoxazole in 6) embedded in the V27 cluster. In this outward binding configuration, an elongation of the ligand by only one methylene in rimantadine 2 or using diamantane or triamantane instead of adamantane in 4 and 5, respectively, causes incomplete entry and facilitates exit, abolishing effective block compared to the amantadine derivatives 1 and 6. In the active M2 S31N blockers 1 and 6, the phenyl and isoxazolyl head groups achieve a deeper binding position and high kon/low koff and high kon/high koff rate constants, compared to inactive 2-5, which have much lower kon and higher koff. Compounds 1-5 block the M2 WT channel by binding in the longer area from V27-H37, in the inward orientation, with high kon and low koff rate constants. Infection of cell cultures by influenza virus containing M2 WT or M2 S31N is inhibited by 1-5 or 1-4 and 6, respectively. While 1 and 6 block infection through the M2 block mechanism in the S31N variant, 2-4 may block M2 S31N virus replication in cell culture through the lysosomotropic effect, just as chloroquine is thought to inhibit SARS-CoV-2 infection.


Subject(s)
Adamantane/pharmacology , Influenza A virus/drug effects , Influenza, Human/prevention & control , Ion Channels/antagonists & inhibitors , Molecular Probes/chemistry , Viral Matrix Proteins/antagonists & inhibitors , Adamantane/analogs & derivatives , Adamantane/chemistry , Adamantane/metabolism , Betacoronavirus/drug effects , Binding Sites , COVID-19 , Cells, Cultured , Chloroquine/pharmacology , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Genetic Variation , Humans , Influenza A virus/chemistry , Influenza A virus/genetics , Influenza, Human/drug therapy , Kinetics , Molecular Probes/metabolism , Pandemics/prevention & control , Pneumonia, Viral/drug therapy , Pneumonia, Viral/prevention & control , Protein Binding , SARS-CoV-2 , Structure-Activity Relationship , Virus Replication/drug effects
14.
Onco Targets Ther ; 13: 5515-5527, 2020.
Article in English | MEDLINE | ID: mdl-32606767

ABSTRACT

INTRODUCTION: Since epithelial growth factor receptor (EGFR) overexpression is linked to a variety of malignancies, it is an attractive target for immune therapy including chimeric antigen receptor (CAR)-engineered T cells. Unfortunately, CAR T cell therapy harbors the risk of severe, even life-threatening side effects. Adaptor CAR T cell platforms such as the previously described UniCAR system might be able to overcome these problems. In contrast to conventional CARs, UniCAR T cells are per se inert. Their redirection towards target cells occurs only in the presence of a tumor-specific target molecule (TM). TMs are bifunctional molecules being able to recognize a tumor-associated antigen and to cross-link the CAR T cell via a peptide epitope recognized by the UniCAR domain. MATERIALS AND METHODS: Here, we compare αEGFR TMs: a nanobody (nb)-based αEGFR TM derived from the camelid αEGFR antibody 7C12 with a murine and humanized single-chain fragment variable (scFv) based on the clinically used antibody Cetuximab®. RESULTS: In principle, both the nb- and scFv-based TM formats are able to redirect UniCAR T cells to eliminate EGFR-expressing tumor cells in an antigen-specific and TM-dependent manner. However, the scFv-based αEGFR TM was significantly superior to the nb-based TM especially with respect to lysis of tumor cells. DISCUSSION: Improved efficiency of the scFv-based TM allowed the redirection of UniCAR T cells towards tumor cells expressing high as well as low EGFR levels in comparison to nb-based αEGFR TMs.

15.
Oncoimmunology ; 9(1): 1743036, 2020.
Article in English | MEDLINE | ID: mdl-32426176

ABSTRACT

Induction or selection of radioresistant cancer (stem) cells following standard radiotherapy is presumably one of the major causes for recurrence of metastatic disease. One possibility to prevent tumor relapse is the application of targeted immunotherapies including, e.g., chimeric antigen receptor (CAR) T cells. In light of long-term remissions, it is highly relevant to clarify whether radioresistant cancer cells are susceptible to CAR T cell-mediated killing. To answer this question, we evaluated the anti-tumor activity of the switchable universal chimeric antigen receptor (UniCAR) system against highly radioresistant head and neck squamous cell carcinoma cells both in vitro and in vivo. Following specific UniCAR T cell engagement via EGFR or CD98 target modules, T cell effector mechanisms were induced including secretion of pro-inflammatory cytokines, up-regulation of granzyme B and perforin, as well as T cell proliferation. CD98- or EGFR-redirected UniCAR T cells further possess the capability to efficiently lyse radioresistant tumor cells. Observed anti-tumor effects were comparable to those against the radiosensitive parental cell lines. Finally, redirected UniCAR T cells significantly inhibited the growth of radioresistant cancer cells in immunodeficient mice. Taken together, our obtained data underline that the UniCAR system is able to overcome radioresistance. Thus, it represents an attractive technology for the development of combined radioimmunotherapeutic approaches that might improve the outcome of patients with metastatic radioresistant tumor diseases.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Animals , Humans , Mice , Neoplasm Recurrence, Local , Neoplasms/radiotherapy , Neoplasms/therapy , Radiation Tolerance , Receptors, Chimeric Antigen , T-Lymphocytes
16.
Oncoimmunology ; 8(9): e1621676, 2019.
Article in English | MEDLINE | ID: mdl-31428518

ABSTRACT

Adoptive transfer of chimeric antigen receptor (CAR)-equipped T cells have demonstrated astonishing clinical efficacy in hematological malignancies recently culminating in the approval of two CAR T cell products. Despite this tremendous success, CAR T cell approaches have still achieved only moderate efficacy against solid tumors. As a major obstacle, engineered conventional T cells (Tconvs) face an anti-inflammatory, hostile tumor microenvironment often infiltrated by highly suppressive regulatory T cells (Tregs). Thus, potent CAR T cell treatment of solid tumors requires efficient activation of Tconvs via their engrafted CAR to overcome Treg-mediated immunosuppression. In that regard, selecting an optimal intracellular signaling domain might represent a crucial step to achieve best clinical efficiency. To shed light on this issue and to investigate responsiveness to Treg inhibition, we engrafted Tconvs with switchable universal CARs (UniCARs) harboring intracellularly the CD3ζ domain alone or in combination with costimulatory CD28 or 4-1BB. Our studies reveal that UniCAR ζ-, and UniCAR BB/ζ-engineered Tconvs are strongly impaired by activated Tregs, whereas UniCARs providing CD28 costimulation overcome Treg-mediated suppression both in vitro and in vivo. Compared to UniCAR ζ- and UniCAR BB/ζ-modified cells, UniCAR 28/ζ-armed Tconvs secrete significantly higher amounts of Th1-related cytokines and, furthermore, levels of these cytokines are elevated even upon exposure to Tregs. Thus, in contrast to 4-1BB costimulation, CD28 signaling in UniCAR-transduced Tconvs seems to foster a pro-inflammatory milieu, which contributes to enhanced resistance to Treg suppression. Overall, our results may have significant implications for CAR T cell-based immunotherapies of solid tumors strongly invaded by Tregs.

17.
Eur J Pharm Biopharm ; 139: 240-245, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30946916

ABSTRACT

Orodispersible tablets (ODTs) are a convenient dosage form and a recent trend in formulation development. The fast disintegration is accompanied by rapid removal of the active principle and the excipients from the mouth due to saliva flow and swallowing. Probiotic bacteria are a promising strategy to fight disease with bacterial aetiology in the mouth, but a certain residence time in the oral cavity is inevitable to exert their positive effects. The addition of a mucoadhesive polymer, like hydroxypropyl methylcellulose (HPMC), is an auspicious strategy to prolong this residence time. Nevertheless, the disintegration time of the tablets should still meet the acceptance level from the FDA (<30 s). To reach intimate contact of bacteria and mucoadhesive polymer on the one hand and to support fast disintegration on the other hand, granulation of probiotic bacteria and mucoadhesive HPMC with a methacrylic acid copolymer was performed first. Moreover, high mucoadhesion could be obtained because bacteria and mucoadhesive polymer could interact more strongly with the mucosa after the ODT disintegrated and the methacrylic acid copolymer dissolved in the pH neutral saliva.


Subject(s)
Excipients/chemistry , Hypromellose Derivatives/chemistry , Mouth Mucosa/metabolism , Probiotics/administration & dosage , Saliva/metabolism , Adhesiveness , Administration, Buccal , Animals , Biological Availability , Chemistry, Pharmaceutical , Drug Compounding/methods , Lacticaseibacillus paracasei , Lactobacillus plantarum , Polymethacrylic Acids/chemistry , Probiotics/pharmacokinetics , Solubility , Swine , Tablets , Time Factors
18.
Reprod Sci ; 26(4): 523-531, 2019 04.
Article in English | MEDLINE | ID: mdl-29806538

ABSTRACT

BAY 1158061 is a potent monoclonal prolactin (PRL) receptor antibody, blocking PRL receptor (PRLR)-mediated signaling in a noncompetitive manner, which was tested in a randomized, placebo-controlled multiple dose study in postmenopausal women. The objective was to investigate safety, tolerability, pharmacokinetic characteristics, and effects of BAY 1158061 on serum PRL level. The study consisted of 4 parallel groups receiving up to 3 subcutaneous (sc) administrations of BAY 1158061 or placebo in 2 different dosing regimens. Twenty-nine healthy postmenopausal women were randomized and treated with BAY 1158061 or placebo: 30 mg at 14-day interval (7 participants), 60 mg at 28-day interval (8 participants), 90 mg at 14-day interval (7 participants), and placebo (7 participants). To keep the blinding, all randomized participants received sc injections biweekly (14-day interval) on 3 occasions in the lower abdomen. The PRLR antibody showed a favorable safety and tolerability profile in postmenopausal women with no distinct differences in occurrence of adverse events in BAY 1158061 or placebo-treated participants. BAY 1158061 displayed low immunogenicity with low titers of antidrug antibodies and absence of neutralizing antidrug antibodies. Pharmacokinetics were characterized by slow absorption after sc administration with median peak plasma concentrations 7 to 11 days after first dose and about 2-fold accumulation after repeated dosing every 2 weeks. The apparent mean elimination half-life was 9 to 16 days. The PRL concentration-time profiles over 24 hours showed no differences between verum- and placebo-treated participants. Based on the data obtained, BAY 1158061 is considered a good candidate for further development in endometriosis or other PRL-mediated disease conditions.


Subject(s)
Antibodies, Monoclonal/pharmacology , Receptors, Prolactin/antagonists & inhibitors , Antibodies, Monoclonal/blood , Drug Administration Schedule , Endometriosis/prevention & control , Female , Humans , Injections, Subcutaneous , Middle Aged , Postmenopause , Receptors, Prolactin/immunology
19.
Int J Pharm ; 551(1-2): 141-147, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30194013

ABSTRACT

Oromucosal drug delivery is necessary when a local effect in the oral cavity is required. Bioadhesive formulations should be advantageous because a larger fraction of the active principal is retained at the site of action allowing for an enhanced and prolonged effect. Despite a variety of mucoadhesion test systems being described in literature, none of these in-vitro tests does relate to physiological conditions in the oral cavity and suites for the testing of complete dosage forms, e.g. tablets. The novel mucoadhesion test is based on porcine buccal mucosa. Constituents, osmolality and pH of the used artificial saliva was as close as possible to physiologic conditions and the flushing rate was equivalent to the physiological secretion rate of saliva. Suitability of the novel test was evaluated with ODTs with live probiotic bacteria as the active principle. With the novel test system, it was shown that in the presence of mucoadhesive polymers (Carbopol®, Metolose® and chitosan) up to 36 % of the probiotic bacteria adhered to the mucosa corresponding to a two- or threefold increase compared to tablets without such polymers. Furthermore, the influence of the tablet size (contact area) on the mucoadhesive properties could be resolved.


Subject(s)
Acrylic Resins/administration & dosage , Chitosan/administration & dosage , Hypromellose Derivatives/administration & dosage , Mouth Mucosa/chemistry , Probiotics/administration & dosage , Adhesiveness , Administration, Buccal , Animals , Swine , Tablets
20.
Methods Mol Biol ; 1836: 159-183, 2018.
Article in English | MEDLINE | ID: mdl-30151573

ABSTRACT

To infect host cells, viruses have to gain access to the intracellular compartment. The infection process starts with the attachment of viruses to the cell surface. Then a complex series of events, highly dynamic, tightly intricate, and often hard to investigate, follows. This includes virus displacement at the plasma membrane, binding to receptors, signaling, internalization, and release of the viral genome and material into the cytosol. In the past decades, the emergence of sensitive, accurate fluorescence-based technologies has opened new perspectives of investigations in the field. Visualization of single viral particles in fixed and living cells as well as quantification of each virus entry step has been made possible. Here we describe the procedure to fluorescently label viral particles. We also illustrate how to use this powerful tool to decipher the entry of viruses with the most recent fluorescence-based techniques such as high-speed confocal and total internal reflection microscopy, flow cytometry, and fluorimetry.


Subject(s)
Fluorescent Dyes , Staining and Labeling , Virion/metabolism , Virus Internalization , Virus Physiological Phenomena , Animals , Cell Line , Flow Cytometry , Fluorescent Dyes/chemistry , Humans , Microscopy, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL