Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 116
1.
Transfus Med Hemother ; 50(4): 303-312, 2023 Aug.
Article En | MEDLINE | ID: mdl-37767275

Background: Frequent blood donors are at high risk of developing iron deficiency. Currently, there is no potent screening during blood donation to detect iron deficient erythropoiesis (IDE) before anemia develops and deferral from donation is inevitable. Study Design and Methods: In addition to capillary and venous hemoglobin, the iron status of 99 frequent blood donors was assessed by various venous blood parameters and zinc protoporphyrin IX (ZnPP). ZnPP was determined by high-performance liquid chromatography (HPLC) and a new prototype fiber-optic device was employed for non-invasive measurements of ZnPP through the blood collection tubing (NI-tubing) and on lip tissue (NI-lip). We aimed to evaluate the feasibility and diagnostic value of the NI-tubing measurement for early detection of severe iron deficiency in blood donors. Results: NI-tubing and HPLC reference measurements of ZnPP showed narrow limits of agreement of 12.2 µmol ZnPP/mol heme and very high correlation (Spearman's Rho = 0.938). Using a cutoff of 65 µmol ZnPP/mol heme, NI-tubing measurements (n = 93) identified 100% of donors with iron deficiency anemia (IDA) and an additional 38% of donors with IDE. Accordingly, NI-tubing measurements would allow detection and selective protection of particularly vulnerable donors. Conclusion: NI-tubing measurements are an accurate and simple method to implement ZnPP determination into the routine blood donation process. ZnPP was able to identify the majority of subjects with IDE and IDA and might therefore be a valuable tool to provide qualified information to donors about dietary measures and adjustments of the donation interval and thereby help to prevent IDA and hemoglobin deferral in the future.

2.
Mov Disord ; 38(9): 1706-1715, 2023 09.
Article En | MEDLINE | ID: mdl-37382573

BACKGROUND: Biomaterials from oral and nasal swabs provide, in theory, a potential resource for biomarker development. However, their diagnostic value has not yet been investigated in the context of Parkinson's disease (PD) and associated conditions. OBJECTIVE: We have previously identified a PD-specific microRNA (miRNA) signature in gut biopsies. In this work, we aimed to investigate the expression of miRNAs in routine buccal (oral) and nasal swabs obtained from cases with idiopathic PD and isolated rapid eye movement sleep behavior disorder (iRBD), a prodromal symptom that often precedes α-synucleinopathies. We aimed to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS: Healthy control cases (n = 28), cases with PD (n = 29), and cases with iRBD (n = 8) were prospectively recruited to undergo routine buccal and nasal swabs. Total RNA was extracted from the swab material, and the expression of a predefined set of miRNAs was quantified by quantitative real-time polymerase chain reaction. RESULTS: Statistical analysis revealed a significantly increased expression of hsa-miR-1260a in cases who had PD. Interestingly, hsa-miR-1260a expression levels correlated with diseases severity, as well as olfactory function, in the PD and iRBD cohorts. Mechanistically, hsa-miR-1260a segregated to Golgi-associated cellular processes with a potential role in mucosal plasma cells. Predicted hsa-miR-1260a target gene expression was reduced in iRBD and PD groups. CONCLUSIONS: Our work demonstrates oral and nasal swabs as a valuable biomarker pool in PD and associated neurodegenerative conditions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


MicroRNAs , Parkinson Disease , REM Sleep Behavior Disorder , Synucleinopathies , Humans , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Parkinson Disease/complications , REM Sleep Behavior Disorder/diagnosis , Biomarkers
3.
Clin Nutr ; 42(7): 1202-1212, 2023 07.
Article En | MEDLINE | ID: mdl-37270344

BACKGROUND: Western dietary habits (WD) have been shown to promote chronic inflammation, which favors the development of many of today's non-communicable diseases. Recently, ketogenic diets (KD) have emerged as an immune-regulating countermeasure for WD-induced metaflammation. To date, beneficial effects of KD have been solely attributed to the production and metabolism of ketone bodies. Given the drastic change in nutrient composition during KD, it is reasonable to assume that there are widespread changes in the human metabolome also contributing to the impact of KD on human immunity. The current study was conducted to gain insight into the changes of the human metabolic fingerprint associated with KD. This could allow to identify metabolites that may contribute to the overall positive effects on human immunity, but also help to recognize potential health risks of KD. METHODS: We conducted a prospective nutritional intervention study enrolling 40 healthy volunteers to perform a three-week ad-libitum KD. Prior to the start and at the end of the nutritional intervention serum metabolites were quantified, untargeted mass spectrometric metabolome analyses and urine analyses of the tryptophan pathway were performed. RESULTS: KD led to a marked reduction of insulin (-21.45% ± 6.44%, p = 0.0038) and c-peptide levels (-19.29% ± 5.45%, p = 0.0002) without compromising fasting blood glucose. Serum triglyceride concentration decreased accordingly (-13.67% ± 5.77%, p = 0.0247), whereas cholesterol parameters remained unchanged. LC-MS/MS-based untargeted metabolomic analyses revealed a profound shift of the human metabolism towards mitochondrial fatty acid oxidation, comprising highly elevated levels of free fatty acids and acylcarnitines. The serum amino acid (AA) composition was rearranged with lower abundance of glucogenic AA and an increase of BCAA. Furthermore, an increase of anti-inflammatory fatty acids eicosatetraenoic acid (p < 0.0001) and docosahexaenoic acid (p = 0.0002) was detected. Urine analyses confirmed higher utilization of carnitines, indicated by lower carnitine excretion (-62.61% ± 18.11%, p = 0.0047) and revealed changes to the tryptophan pathway depicting reduced quinolinic acid (-13.46% ± 6.12%, p = 0.0478) and elevated kynurenic acid concentrations (+10.70% ± 4.25%, p = 0.0269). CONCLUSIONS: A KD fundamentally changes the human metabolome even after a short period of only three weeks. Besides a rapid metabolic switch to ketone body production and utilization, improved insulin and triglyceride levels and an increase in metabolites that mediate anti-inflammation and mitochondrial protection occurred. Importantly, no metabolic risk factors were identified. Thus, a ketogenic diet could be considered as a safe preventive and therapeutic immunometabolic tool in modern medicine. TRIAL REGISTRATION: German Clinical Trials Register; DRKS-ID: DRKS00027992 (www.drks.de).


Diet, Ketogenic , Humans , Diet, Ketogenic/adverse effects , Chromatography, Liquid , Tryptophan , Prospective Studies , Tandem Mass Spectrometry , Metabolome , Triglycerides , Insulin , Ketone Bodies
4.
Cancer Biomark ; 37(4): 237-248, 2023.
Article En | MEDLINE | ID: mdl-37302022

BACKGROUND: Carcinoembryonic antigen (CEA) is the only established serum biomarker for colorectal cancer (CRC). To facilitate therapy decisions and improve the overall survival of CRC patients, prognostic biomarkers are required. OBJECTIVE: We studied the prognostic value of five different cell free circulating DNA (fcDNA) fragments. The potential markers were ALU115, ALU247, LINE1-79, LINE1-300 and ND1-mt. METHODS: The copy numbers of the DNA fragments were measured in the peripheral blood serum of 268 CRC patients using qPCR, the results were compared to common and previously described markers. RESULTS: We found that ALU115 and ALU247 fcDNA levels correlate significantly with several clinicopathological parameters. An increased amount of ALU115 and ALU247 fcDNA fragments coincides with methylation of HPP1 (P< 0.001; P< 0.01), which proved to be a prognostic marker itself in former studies and also with increased CEA level (both P< 0.001). ALU115 and ALU247 can define patients with poor survival in UICC stage IV (ALU115: HR = 2.9; 95% Cl 1.8-4.8, P< 0.001; ALU247: HR = 2.2; 95% Cl 1.3-3.6; P= 0.001). Combining ALU115 and HPP1, the prognostic value in UICC stage IV is highly significant (P< 0.001). CONCLUSIONS: This study shows that an increased level of ALU fcDNA is an independent prognostic biomarker for advanced colorectal cancer disease.


Cell-Free Nucleic Acids , Colorectal Neoplasms , Humans , Carcinoembryonic Antigen , Prognosis , Biomarkers, Tumor/genetics , Serum , Cell-Free Nucleic Acids/genetics , Colorectal Neoplasms/pathology
5.
Curr Opin Cardiol ; 38(3): 179-192, 2023 05 01.
Article En | MEDLINE | ID: mdl-36930221

PURPOSE OF REVIEW: Here, we review recent findings on the role of long noncoding RNAs (lncRNAs) in cardiovascular disease (CVD). In addition, we highlight some of the latest findings in lncRNA biology, providing an outlook for future avenues of lncRNA research in CVD. RECENT FINDINGS: Recent publications provide translational evidence from patient studies and animal models for the role of specific lncRNAs in CVD. The molecular effector mechanisms of these lncRNAs are diverse. Overall, cell-type selective modulation of gene expression is the largest common denominator. New methods, such as single-cell profiling and CRISPR/Cas9-screening, reveal additional novel mechanistic principles: For example, many lncRNAs establish RNA-based spatial compartments that concentrate effector proteins. Also, RNA modifications and splicing features can be determinants of lncRNA function. SUMMARY: lncRNA research is passing the stage of enumerating lncRNAs or recording simplified on-off expression switches. Mechanistic analyses are starting to reveal overarching principles of how lncRNAs can function. Exploring these principles with decisive genetic testing in vivo remains the ultimate test to discern how lncRNA loci, by RNA motifs or DNA elements, affect CVD pathophysiology.


Cardiovascular Diseases , RNA, Long Noncoding , Animals , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cardiovascular Diseases/genetics
6.
EBioMedicine ; 89: 104456, 2023 Mar.
Article En | MEDLINE | ID: mdl-36745974

A major evolution from purely clinical diagnoses to biomarker supported clinical diagnosing has been occurring over the past years in neurology. High-throughput methods, such as next-generation sequencing and mass spectrometry-based proteomics along with improved neuroimaging methods, are accelerating this development. This calls for a consensus framework that is broadly applicable and provides a spot-on overview of the clinical validity of novel biomarkers. We propose a harmonized terminology and a uniform concept that stratifies biomarkers according to clinical context of use and evidence levels, adapted from existing frameworks in oncology with a strong focus on (epi)genetic markers and treatment context. We demonstrate that this framework allows for a consistent assessment of clinical validity across disease entities and that sufficient evidence for many clinical applications of protein biomarkers is lacking. Our framework may help to identify promising biomarker candidates and classify their applications by clinical context, aiming for routine clinical use of (protein) biomarkers in neurology.


Nervous System Diseases , Humans , Biomarkers , Proteomics/methods , Mass Spectrometry , Neuroimaging
7.
Transpl Immunol ; 77: 101795, 2023 04.
Article En | MEDLINE | ID: mdl-36716976

BACKGROUND: Small-for-size syndrome (SFSS) is a major complication following extended liver resection. The role of platelets in the early development of SFSS remains to be cleared. We aimed to investigate the impact of platelets and PAR-4, a receptor for platelet activation, on the acute phase microcirculatory injury after liver resection by in vivo microscopy analyzing the changes in leukocyte recruitment, platelet-neutrophil interaction, and microthrombosis-induced perfusion failure. METHODS: Sixty-percent partial hepatectomy (PH) models using C57BL/6 mice receiving platelet depletion with anti-GPIbα, PAR-4 blockade with tcY-NH2, or vehicle treatment with saline were used. Sham-operated animals served as controls. Epifluorescence microscopic analysis was performed 2 h after PH to quantify the leukocyte recruitment and microcirculatory changes. Sinusoidal neutrophil recruitment, platelet-neutrophil interaction, and microthrombosis were evaluated using two-photon microscopy. ICAM-1 expression and liver liver injury were assessed in tissue/blood samples. RESULTS: The increments of leukocyte recruitment in post-sinusoidal venules and sinusoidal perfusion failure, the upregulation of ICAM-1 expression, and the deterioration of liver function 2 h after 60% PH were alleviated in the absence of platelets or by PAR-4 blockade. Intensified platelet-neutrophil interaction and microthrombosis in sinusoids were observed 2 h after 60% PH, which significantly attenuated after PAR-4 blockade. CONCLUSION: Platelets play a critical role in acute liver injury after extended liver resection within 2 h. The deactivation of platelets via PAR-4 blockade ameliorated liver function deterioration by suppressing early leukocyte recruitment, platelet-neutrophil interaction, and microthrombosis in hepatic sinusoids.


Intercellular Adhesion Molecule-1 , Reperfusion Injury , Mice , Animals , Hepatectomy , Microcirculation , Mice, Inbred C57BL , Liver , Peptide Hydrolases
8.
Microcirculation ; 30(1): e12796, 2023 Jan.
Article En | MEDLINE | ID: mdl-36577737

OBJECTIVE: Post-hepatectomy liver failure (PHLF) is the main limitation of extended liver resection. The molecular mechanism and the role of leukocytes in the development of PHLF remain to be unveiled. We aimed to address the impact of serine proteases (SPs) on the acute phase after liver resection by intravitally analyzing leukocyte recruitment and changes in hemodynamics and microcirculation of the liver. METHODS: C57BL/6 mice undergoing 60% partial hepatectomy were treated with aprotinin (broad-spectrum SP inhibitor), tranexamic acid (plasmin inhibitor), or vehicle. Sham-operated animals served as controls. In vivo fluorescence microscopy was used to quantify leukocyte-endothelial interactions immediately after, as well as 120 min after partial hepatectomy in postsinusoidal venules, along with measurement of sinusoidal perfusion rate and postsinusoidal shear rate. Recruitment of leukocytes, neutrophils, T cells, and parameters of liver injury were assessed in tissue/blood samples. RESULTS: Leukocyte recruitment, sinusoidal perfusion failure rate, and shear rate were significantly increased in mice after 60% partial hepatectomy compared to sham-operated animals. The inhibition of SPs or plasmin significantly attenuated leukocyte recruitment and improved the perfusion rate in the remnant liver. ICAM-1 expression and neutrophil recruitment significantly increased after 60% partial hepatectomy and were strongly reduced by plasmin inhibition. CONCLUSIONS: Endothelial activation and leukocyte recruitment in the liver in response to the increment of sinusoidal shear rate were hallmarks in the acute phase after liver resection. SPs mediated leukocyte recruitment and contributed to the impairment of sinusoidal perfusion in an ICAM-1-dependent manner in the acute phase after liver resection.


Hepatectomy , Intercellular Adhesion Molecule-1 , Mice , Animals , Intercellular Adhesion Molecule-1/metabolism , Serine Proteases/metabolism , Fibrinolysin/metabolism , Mice, Inbred C57BL , Liver/metabolism , Leukocytes , Microcirculation
9.
Basic Res Cardiol ; 117(1): 11, 2022 03 08.
Article En | MEDLINE | ID: mdl-35258704

Cardiosphere-derived cells (CDCs) generated from human cardiac biopsies have been shown to have disease-modifying bioactivity in clinical trials. Paradoxically, CDCs' cellular origin in the heart remains elusive. We studied the molecular identity of CDCs using single-cell RNA sequencing (sc-RNAseq) in comparison to cardiac non-myocyte and non-hematopoietic cells (cardiac fibroblasts/CFs, smooth muscle cells/SMCs and endothelial cells/ECs). We identified CDCs as a distinct and mitochondria-rich cell type that shared biological similarities with non-myocyte cells but not with cardiac progenitor cells derived from human-induced pluripotent stem cells. CXCL6 emerged as a new specific marker for CDCs. By analysis of sc-RNAseq data from human right atrial biopsies in comparison with CDCs we uncovered transcriptomic similarities between CDCs and CFs. By direct comparison of infant and adult CDC sc-RNAseq data, infant CDCs revealed GO-terms associated with cardiac development. To analyze the beneficial effects of CDCs (pro-angiogenic, anti-fibrotic, anti-apoptotic), we performed functional in vitro assays with CDC-derived extracellular vesicles (EVs). CDC EVs augmented in vitro angiogenesis and did not stimulate scarring. They also reduced the expression of pro-apoptotic Bax in NRCMs. In conclusion, CDCs were disclosed as mitochondria-rich cells with unique properties but also with similarities to right atrial CFs. CDCs displayed highly proliferative, secretory and immunomodulatory properties, characteristics that can also be found in activated or inflammatory cell types. By special culture conditions, CDCs earn some bioactivities, including angiogenic potential, which might modify disease in certain disorders.


Endothelial Cells , Adult , Humans , Myocytes, Cardiac , Sequence Analysis, RNA , Stem Cells
10.
Nat Commun ; 13(1): 318, 2022 01 14.
Article En | MEDLINE | ID: mdl-35031603

Lung emphysema and chronic bronchitis are the two most common causes of chronic obstructive pulmonary disease. Excess macrophage elastase MMP-12, which is predominantly secreted from alveolar macrophages, is known to mediate the development of lung injury and emphysema. Here, we discovered the endolysosomal cation channel mucolipin 3 (TRPML3) as a regulator of MMP-12 reuptake from broncho-alveolar fluid, driving in two independently generated Trpml3-/- mouse models enlarged lung injury, which is further exacerbated after elastase or tobacco smoke treatment. Mechanistically, using a Trpml3IRES-Cre/eR26-τGFP reporter mouse model, transcriptomics, and endolysosomal patch-clamp experiments, we show that in the lung TRPML3 is almost exclusively expressed in alveolar macrophages, where its loss leads to defects in early endosomal trafficking and endocytosis of MMP-12. Our findings suggest that TRPML3 represents a key regulator of MMP-12 clearance by alveolar macrophages and may serve as therapeutic target for emphysema and chronic obstructive pulmonary disease.


Macrophages, Alveolar/enzymology , Matrix Metalloproteinase 12/metabolism , Pancreatic Elastase/metabolism , Pulmonary Emphysema/enzymology , Transient Receptor Potential Channels/deficiency , Animals , Disease Models, Animal , Endosomes/metabolism , Female , Humans , Lung/enzymology , Matrix Metalloproteinase 12/genetics , Mice , Mice, Knockout , Pancreatic Elastase/genetics , Pulmonary Emphysema/genetics , Pulmonary Emphysema/metabolism , Transient Receptor Potential Channels/genetics
11.
Eur J Prev Cardiol ; 29(3): 436-444, 2022 03 25.
Article En | MEDLINE | ID: mdl-33624084

AIMS: Physical activity (PA) is a mainstay of cardiovascular prevention. This study aimed to identify metabolic mediators of PA that protect against the development of atherosclerosis. METHODS AND RESULTS: A total of 2160 participants in the LIFE heart study were analysed with data on PA and vascular phenotyping. In a targeted metabolomic approach, 61 metabolites (amino acids and acylcarnitines) were measured using liquid chromatography-tandem mass spectrometry. We investigated the interactions between PA, metabolites and markers of atherosclerosis in order to uncover possible mediation effects. Intended sports activity, but no daily PA, was associated with a lower degree of atherosclerosis, odds ratio (OR) for total atherosclerotic burden of 0.76 (95% confidence interval 0.62-0.94), carotid artery plaque OR 0.79 (0.66-0.96), and peripheral artery disease OR 0.74 (0.56-0.98). Twelve amino acids, free carnitine, five acylcarnitines were associated with sports activity. Of these, eight metabolites were also associated with the degree of atherosclerosis. In the mediation analyses, a cluster of amino acids (arginine, glutamine, pipecolic acid, taurine) were considered as possible mediators of atheroprotection. In contrast, a group of members of the carnitine metabolism (free carnitine, acetyl carnitine, octadecenoyl carnitine) were associated with inactivity and higher atherosclerotic burden. CONCLUSION: Our metabolomic approach, which is integrated into a mediation model, provides transformative insights into the complex metabolic processes involved in atheroprotection. Metabolites with antioxidant and endothelial active properties are believed to be possible mediators of atheroprotection. The metabolomic mediation approach can support the understanding of complex diseases in order to identify targets for prevention and therapy.


Amino Acids , Metabolomics , Biomarkers , Exercise , Humans , Mass Spectrometry , Metabolomics/methods
12.
J Immunother Cancer ; 9(12)2021 12.
Article En | MEDLINE | ID: mdl-34876407

BACKGROUND: Beyond their fundamental role in homeostasis and host defense, neutrophilic granulocytes (neutrophils) are increasingly recognized to contribute to the pathogenesis of malignant tumors. Recently, aging of mature neutrophils in the systemic circulation has been identified to be critical for these immune cells to properly unfold their homeostatic and anti-infectious functional properties. The role of neutrophil aging in cancer remains largely obscure. METHODS: Employing advanced in vivo microscopy techniques in different animal models of cancer as well as utilizing pulse-labeling and cell transfer approaches, various ex vivo/in vitro assays, and human data, we sought to define the functional relevance of neutrophil aging in cancer. RESULTS: Here, we show that signals released during early tumor growth accelerate biological aging of circulating neutrophils, hence uncoupling biological from chronological aging of these immune cells. This facilitates the accumulation of highly reactive neutrophils in malignant lesions and endows them with potent protumorigenic functions, thus promoting tumor progression. Counteracting uncoupled biological aging of circulating neutrophils by blocking the chemokine receptor CXCR2 effectively suppressed tumor growth. CONCLUSIONS: Our data uncover a self-sustaining mechanism of malignant neoplasms in fostering protumorigenic phenotypic and functional changes in circulating neutrophils. Interference with this aberrant process might therefore provide a novel, already pharmacologically targetable strategy for cancer immunotherapy.


Aging , Carcinoma, Squamous Cell/pathology , Inflammation/pathology , Neovascularization, Pathologic , Neutrophils/immunology , Receptors, Interleukin-8B/metabolism , Animals , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/metabolism , Chemokine CXCL2/genetics , Chemokine CXCL2/metabolism , Female , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Interleukin-8B/genetics
13.
Circulation ; 144(17): 1409-1428, 2021 10 26.
Article En | MEDLINE | ID: mdl-34694888

BACKGROUND: Complex molecular programs in specific cell lineages govern human heart development. Hypoplastic left heart syndrome (HLHS) is the most common and severe manifestation within the spectrum of left ventricular outflow tract obstruction defects occurring in association with ventricular hypoplasia. The pathogenesis of HLHS is unknown, but hemodynamic disturbances are assumed to play a prominent role. METHODS: To identify perturbations in gene programs controlling ventricular muscle lineage development in HLHS, we performed whole-exome sequencing of 87 HLHS parent-offspring trios, nuclear transcriptomics of cardiomyocytes from ventricles of 4 patients with HLHS and 15 controls at different stages of heart development, single cell RNA sequencing, and 3D modeling in induced pluripotent stem cells from 3 patients with HLHS and 3 controls. RESULTS: Gene set enrichment and protein network analyses of damaging de novo mutations and dysregulated genes from ventricles of patients with HLHS suggested alterations in specific gene programs and cellular processes critical during fetal ventricular cardiogenesis, including cell cycle and cardiomyocyte maturation. Single-cell and 3D modeling with induced pluripotent stem cells demonstrated intrinsic defects in the cell cycle/unfolded protein response/autophagy hub resulting in disrupted differentiation of early cardiac progenitor lineages leading to defective cardiomyocyte subtype differentiation/maturation in HLHS. Premature cell cycle exit of ventricular cardiomyocytes from patients with HLHS prevented normal tissue responses to developmental signals for growth, leading to multinucleation/polyploidy, accumulation of DNA damage, and exacerbated apoptosis, all potential drivers of left ventricular hypoplasia in absence of hemodynamic cues. CONCLUSIONS: Our results highlight that despite genetic heterogeneity in HLHS, many mutations converge on sequential cellular processes primarily driving cardiac myogenesis, suggesting novel therapeutic approaches.


Hypoplastic Left Heart Syndrome/genetics , Organogenesis/genetics , Genetic Heterogeneity , Humans
14.
Nutrients ; 13(9)2021 Aug 29.
Article En | MEDLINE | ID: mdl-34578900

Protein intake in early life influences metabolism, weight gain, and later obesity risk. As such, a better understanding of the effects of protein intake on the postprandial metabolism and its dynamics over time may elucidate underlying mechanisms. In a randomized crossover study, we observed fasted adults who consumed two isocaloric toddler milk formulas concentrated as meals of 480 kcal with 67 g of carbohydrates 30 g (HP) or 7 g (LP) protein, and 10 g or 20 g fat, respectively. Anthropometry and body plethysmography were assessed, and blood samples collected at baseline and over five hours. Time-specific concentrations, areas under concentration curves (AUC), and maximum values of metabolites were compared by paired t-tests to examine the effects of protein content of toddler milks on postprandial plasma concentrations of insulin, glucose, branched-chain amino acids (BCAA), urea and triglycerides. Twenty-seven men and women aged 26.7 ± 5.0 years (BMI: 22.2 ± 2.5 kg/m2) (mean ± SD) participated. BCAA AUC, and Cmax values were significantly higher with HP than LP (144,765 ± 21,221 vs. 97,089 ± 14,650 µmol·min/L, p < 0.001; 656 ± 120 vs. 407 ± 66 µmol/L, p < 0.001), as were insulin AUC and Cmax values (6674 ± 3013 vs. 5600 ± 2423 µmol·min/L, p = 0.005; 71 ± 37 vs. 55 ± 28 µmol/L, p = 0.001). Higher glucose, urea, and triglyceride concentrations occurred in the late postprandial phase (≥180 min) with HP. In conclusion, we noted that higher milk protein intake induces increased postprandial BCAA concentrations for at least 5 h and led to higher initial insulin secretion. Gluconeogenesis due to an influx of amino acids and their degradation after HP meal might explain the late effects of protein intake on glucose and insulin.


Dietary Proteins/blood , Dietary Proteins/pharmacology , Milk/metabolism , Adult , Amino Acids, Branched-Chain/blood , Animals , Blood Glucose/metabolism , Cross-Over Studies , Dietary Proteins/administration & dosage , Female , Humans , Insulin/blood , Male , Postprandial Period , Triglycerides/blood , Urea/blood
15.
J Am Heart Assoc ; 10(17): e020231, 2021 09 07.
Article En | MEDLINE | ID: mdl-34420357

Background While numerous interventions effectively interfered with abdominal aortic aneurysm (AAA) formation/progression in preclinical models, none of the successes translated into clinical success. Hence, a systematic exploration of parallel and divergent processes in clinical AAA disease and its 2 primary models (the porcine pancreatic elastase and angiotensin-II infusion [AngII] murine model) was performed to identify mechanisms relevant for aneurysm disease. Methods and Results This study combines Movat staining and pathway analysis for histological and genomic comparisons between clinical disease and its models. The impact of a notable genomic signal for metabolic reprogramming was tested in a rescue trial (AngII model) evaluating the impact of 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15)-mediated interference with main glycolytic switch PFKFB3. Histological evaluation characterized the AngII model as a dissection model that is accompanied by adventitial fibrosis. The porcine pancreatic elastase model showed a transient inflammatory response and aortic dilatation, followed by stabilization and fibrosis. Normalization of the genomic responses at day 14 confirmed the self-limiting nature of the porcine pancreatic elastase model. Clear parallel genomic responses with activated adaptive immune responses, and particularly strong signals for metabolic switching were observed in human AAA and the AngII model. Rescue intervention with the glycolysis inhibitor PFK15 in the AngII model showed that interference with the glycolytic switching quenches aneurysm formation. Conclusions Despite clear morphological contrasts, remarkable genomic parallels exist for clinical AAA disease and the AngII model. The metabolic response appears causatively involved in AAA progression and provides a novel therapeutic target. The clear transient genomic response classifies the porcine pancreatic elastase model as a disease initiation model.


Aortic Aneurysm, Abdominal , Angiotensin II , Animals , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Fibrosis , Genomics , Humans , Mice , Mice, Inbred C57BL , Pancreatic Elastase , Swine
16.
EMBO Mol Med ; 13(8): e14167, 2021 08 09.
Article En | MEDLINE | ID: mdl-34232570

A deeper understanding of COVID-19 on human molecular pathophysiology is urgently needed as a foundation for the discovery of new biomarkers and therapeutic targets. Here we applied mass spectrometry (MS)-based proteomics to measure serum proteomes of COVID-19 patients and symptomatic, but PCR-negative controls, in a time-resolved manner. In 262 controls and 458 longitudinal samples of 31 patients, hospitalized for COVID-19, a remarkable 26% of proteins changed significantly. Bioinformatics analyses revealed co-regulated groups and shared biological functions. Proteins of the innate immune system such as CRP, SAA1, CD14, LBP, and LGALS3BP decreased early in the time course. Regulators of coagulation (APOH, FN1, HRG, KNG1, PLG) and lipid homeostasis (APOA1, APOC1, APOC2, APOC3, PON1) increased over the course of the disease. A global correlation map provides a system-wide functional association between proteins, biological processes, and clinical chemistry parameters. Importantly, five SARS-CoV-2 immunoassays against antibodies revealed excellent correlations with an extensive range of immunoglobulin regions, which were quantified by MS-based proteomics. The high-resolution profile of all immunoglobulin regions showed individual-specific differences and commonalities of potential pathophysiological relevance.


COVID-19 , Proteome , Antibodies, Viral , Aryldialkylphosphatase , Humans , Proteomics , SARS-CoV-2 , Seroconversion
17.
Parkinsonism Relat Disord ; 88: 46-50, 2021 07.
Article En | MEDLINE | ID: mdl-34118643

OBJECTIVE: In the present work, we aimed to investigate the expression of microRNAs (miRNAs) in routine colonic biopsies obtained from patients with idiopathic Parkinson's disease (PD) and to address their value as a diagnostic biomarker for PD and their mechanistic contribution to PD onset and progression. METHODS: Patients with PD (n = 13) and healthy controls (n = 17) were prospectively recruited to undergo routine colonic biopsies for cancer screening. Total RNA was extracted from the biopsy material and the expression of miRNAs was quantified by Illumina High-Throughput Sequencing. RESULTS: Statistical analysis revealed a significant submucosal enrichment of the miRNA hsa-miR-486-5p in colonic biopsies from PD patients compared to the control subjects. The expression of miR-486-5p correlated with age and disease severity as measured by the UPDRS and Hoehn & Yahr scale. miRNA gene target analysis identified 301 gene targets that are affected by miR-486-5p. A follow-up associated target identification and pathway enrichment analysis further determined their role in distinct biological processes in the enteric nervous system (ENS). INTERPRETATION: Our work demonstrates an enrichment of submucosal miR-486-5p in routine colonic biopsies from PD patients. Our results will support the examination of miR-486-5p as a PD biomarker and help to understand the significance of the miR-486-5p gene targets for PD onset and progression. In addition, our data will support the investigation of the molecular and cellular mechanisms of GI dysfunction in PD.


Colon/metabolism , Enteric Nervous System/metabolism , MicroRNAs/metabolism , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Age Factors , Aged , Biomarkers/metabolism , Biopsy , Colon/pathology , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Severity of Illness Index
18.
PLoS One ; 16(5): e0251587, 2021.
Article En | MEDLINE | ID: mdl-33984048

OBJECTIVES: During the COVID-19 pandemic, SARS-CoV-2 antibody testing has been suggested for (1) screening populations for disease prevalence, (2) diagnostics, and (3) guiding therapeutic applications. Here, we conducted a detailed clinical evaluation of four Anti-SARS-CoV-2 immunoassays in samples from acutely ill COVID-19 patients and in two negative cohorts. METHODS: 443 serum specimens from serial sampling of 29 COVID-19 patients were used to determine clinical sensitivities. Patients were stratified for the presence of acute respiratory distress syndrome (ARDS). Individual serum specimens from a pre-COVID-19 cohort of 238 healthy subjects and from a PCR-negative clinical cohort of 257 patients were used to determine clinical specificities. All samples were measured side-by-side with the Anti-SARS-CoV-2-ELISA (IgG), Anti-SARS-CoV-2-ELISA (IgA) and Anti-SARS-CoV-2-NCP-ELISA (IgG) (Euroimmun AG, Lübeck, Germany) and the Elecsys Anti-SARS-CoV-2 ECLIA (Roche Diagnostics International, Rotkreuz, Switzerland). RESULTS: Median seroconversion occurred earlier in ARDS patients (8-9 days) than in non-ARDS patients (11-17 days), except for EUR N-IgG. Rates of positivity and mean signal ratios in the ARDS group were significantly higher than in the non-ARDS group. Sensitivities between the four tested immunoassays were equivalent. In the set of negative samples, the specificity of the Anti-SARS-CoV-2-ELISA (IgA) was lower (93.9%) compared to all other assays (≥98.8%) and the specificity of Anti-SARS-CoV-2-NCP-ELISA (IgG) was lower (98.8%) than that of Elecsys Anti-SARS-CoV-2 (100%). CONCLUSIONS: Serial sampling in COVID-19 patients revealed earlier seroconversion and higher signal ratios of SARS-CoV-2 antibodies as a potential risk marker for the development of ARDS, suggesting a utility for antibody testing in acutely diseased patients.


COVID-19/complications , COVID-19/immunology , Respiratory Distress Syndrome/etiology , SARS-CoV-2/immunology , Seroconversion , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19 Serological Testing , Female , Humans , Immunoassay , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Respiratory Distress Syndrome/blood , Respiratory Distress Syndrome/immunology , SARS-CoV-2/isolation & purification
19.
J Control Release ; 333: 1-15, 2021 05 10.
Article En | MEDLINE | ID: mdl-33741385

Various thermosensitive liposome (TSL) formulations have been described to date and it is currently unclear which are optimal for solid tumor treatment. Sufficient circulation half-life is important and most liposomes obtain this by polyethylene glycol (PEG) surface modification. 1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol (DPPG2) has been described as a promising alternative which increases TSL circulation half-life and facilitates rapid drug release under mild hyperthermia at 20-30 mol%. The present work describes an investigation of the DPPG2-TSL protein corona, blood cell interactions, complement activation in human plasma/blood and hypersensitivity reactions in rats. Furthermore, accelerated blood clearance (ABC) was investigated to obtain a complete assessment of DPPG2-TSL interactions with components of the blood and identify drivers for circulation half-life. A higher mol% DPPG2 increased Apolipoprotein E (ApoE) adsorption and decreased complement activation and granulocyte interaction in vitro. In contrast to PEG-TSL, DPPG2-TSL showed no ABC effect. In vivo hypersensitivity assessment by eicosanoid measurements, platelet and lymphocyte counting resembled the results of in vitro complement activation assays although here all DPPG2-TSL formulations induced hypersensitive responses upon i.v. administration. Prolonged circulation half-life of DPPG2-TSL may be ApoE-induced and the absent ABC effect demonstrates an advantage over PEG-TSL. Low complement activation in human plasma and blood for 20-30 mol% DPPG2-TSL presents a unique formulation attribute with the potential to strengthen clinical evaluation.


Hyperthermia, Induced , Liposomes , Animals , Doxorubicin , Half-Life , Polyethylene Glycols , Rats
20.
Dis Model Mech ; 14(1)2021 01 01.
Article En | MEDLINE | ID: mdl-33293281

This study's aim was to demonstrate that the combination of patient immune profiling and testing in a humanized mouse model of ulcerative colitis (UC) might lead to patient stratification for treatment with oxelumab. First, immunological profiles of UC patients and non-UC donors were analyzed for CD4+ T cells expressing OX40 (CD134; also known as TNFRSF4) and CD14+ monocytes expressing OX40L (CD252; also known as TNFSF4) by flow cytometric analysis. A significant difference was observed between the groups for CD14+ OX40L+ (UC: n=11, 85.44±21.17, mean±s.d.; non-UC: n=5, 30.7±34.92; P=0.02), whereas no significant difference was detected for CD4+ OX40+. CD14+ OX40L+ monocytes were correlated significantly with T helper 1 and 2 cells. Second, NOD/Scid IL2Rγ null mice were reconstituted with peripheral blood mononuclear cells from UC donors exhibiting elevated levels of OX40L, and the efficacy of oxelumab was compared with that of adalimumab. The clinical, colon and histological scores and the serum concentrations of IL-6, IL-1ß and glutamic acid were assessed. Treatment with oxelumab or adalimumab resulted in significantly reduced clinical, colon and histological scores, reduced serum concentrations of IL-6 and reduced frequencies of splenic human effector memory T cells and switched B cells. Comparison of the efficacy of adalimumab and oxelumab by orthogonal partial least squares discrimination analysis revealed that oxelumab was slightly superior to adalimumab; however, elevated serum concentrations of glutamic acid suggested ongoing inflammation. These results suggest that oxelumab addresses the pro-inflammatory arm of inflammation while promoting the remodeling arm and that patients exhibiting elevated levels of OX40L might benefit from treatment with oxelumab.


Adalimumab/pharmacology , Antibodies, Monoclonal/chemistry , Colitis, Ulcerative/genetics , Colitis, Ulcerative/metabolism , Leukocytes, Mononuclear/cytology , OX40 Ligand/chemistry , Receptors, OX40/genetics , Adult , Aged , Aged, 80 and over , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , CD4-Positive T-Lymphocytes/cytology , Colitis, Ulcerative/physiopathology , Disease Models, Animal , Female , Humans , Interleukin Receptor Common gamma Subunit/metabolism , Lectins, C-Type/metabolism , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , OX40 Ligand/metabolism , Principal Component Analysis , Receptors, OX40/metabolism , Treatment Outcome , Young Adult
...