Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1899, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429276

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Cytokines , Transcriptome , Lupus Erythematosus, Systemic/genetics , Antibody-Producing Cells
2.
Res Sq ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37461641

ABSTRACT

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibodies, some of which are present in high titers in a sustained, B cell-independent fashion consistent with their generation from long-lived plasma cells (LLPC). Active SLE displays high numbers of circulating antibody-secreting cells (ASC). Understanding the mechanisms of generation and survival of SLE ASC would contribute important insight into disease pathogenesis and novel targeted therapies. We studied the properties of SLE ASC through a systematic analysis of their phenotypic, molecular, structural, and functional features. Our results indicate that in active SLE, relative to healthy post-immunization responses, blood ASC contain a much larger fraction of newly generated mature CD19- CD138+ ASC similar to bone marrow (BM) LLPC. SLE ASC were characterized by morphological and structural features of premature maturation. Additionally, SLE ASC express high levels of CXCR4 and CD138, and molecular programs consistent with increased longevity based on pro-survival and attenuated pro-apoptotic pathways. Notably, SLE ASC demonstrate autocrine production of APRIL and IL-10 and experience prolonged in vitro survival. Combined, our findings indicate that SLE ASC are endowed with enhanced peripheral maturation, survival and BM homing potential suggesting that these features likely underlie BM expansion of autoreactive PC.

3.
Mucosal Immunol ; 16(3): 287-301, 2023 06.
Article in English | MEDLINE | ID: mdl-36931600

ABSTRACT

Immunoglobulin (Ig) E is central to the pathogenesis of allergic conditions, including allergic fungal rhinosinusitis. However, little is known about IgE antibody secreting cells (ASCs). We performed single-cell RNA sequencing from cluster of differentiation (CD)19+ and CD19- ASCs of nasal polyps from patients with allergic fungal rhinosinusitis (n = 3). Nasal polyps were highly enriched in CD19+ ASCs. Class-switched IgG and IgA ASCs were dominant (95.8%), whereas IgE ASCs were rare (2%) and found only in the CD19+ compartment. Through Ig gene repertoire analysis, IgE ASCs shared clones with IgD-CD27- "double-negative" B cells, IgD+CD27+ unswitched memory B cells, and IgD-CD27+ switched memory B cells, suggesting ontogeny from both IgD+ and memory B cells. Transcriptionally, mucosal IgE ASCs upregulate pathways related to antigen presentation, chemotaxis, B cell receptor stimulation, and survival compared with non-IgE ASCs. Additionally, IgE ASCs have a higher expression of genes encoding lysosomal-associated protein transmembrane 5 (LAPTM5) and CD23, as well as upregulation of CD74 (receptor for macrophage inhibitory factor), store-operated Calcium entry-associated regulatory factor (SARAF), and B cell activating factor receptor (BAFFR), which resemble an early minted ASC phenotype. Overall, these findings reinforce the paradigm that human ex vivo mucosal IgE ASCs have a more immature plasma cell phenotype than other class-switched mucosal ASCs and suggest unique functional roles for mucosal IgE ASCs in concert with Ig secretion.


Subject(s)
Nasal Polyps , Humans , Immunoglobulin E , Antibody-Producing Cells , Nasal Mucosa , Phenotype , Single-Cell Analysis
4.
Nature ; 611(7934): 139-147, 2022 11.
Article in English | MEDLINE | ID: mdl-36044993

ABSTRACT

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Subject(s)
Autoantibodies , B-Lymphocytes , COVID-19 , Humans , Autoantibodies/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , COVID-19/immunology , COVID-19/pathology , COVID-19/physiopathology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Immunoglobulin G/immunology , Single-Cell Analysis , Autoantigens/immunology , Basement Membrane/immunology , Post-Acute COVID-19 Syndrome
5.
J Immunol ; 208(9): 2141-2153, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35418472

ABSTRACT

The ability of the humoral immune system to generate Abs capable of specifically binding a myriad of Ags is critically dependent on the somatic hypermutation program. This program induces both templated mutations (i.e., gene conversion) and untemplated mutations. In humans, somatic hypermutation is widely believed to result in untemplated point mutations. In this study, we demonstrate detection of large-scale templated events that occur in human memory B cells and circulating plasmablasts. We find that such mutations are templated intrachromosomally from IGHV genes and interchromosomally from IGHV pseudogenes as well as other homologous regions unrelated to IGHV genes. These same donor regions are used in multiple individuals, and they predominantly originate from chromosomes 14, 15, and 16. In addition, we find that exogenous sequences placed at the IgH locus, such as LAIR1, undergo templated mutagenesis and that homology appears to be the major determinant for donor choice. Furthermore, we find that donor tracts originate from areas in proximity with open chromatin, which are transcriptionally active, and are found in spatial proximity with the IgH locus during the germinal center reaction. These donor sequences are inserted into the Ig gene segment in association with overlapping activation-induced cytidine deaminase hotspots. Taken together, these studies suggest that diversity generated during the germinal center response is driven by untemplated point mutations as well as templated mutagenesis using local and distant regions of the genome.


Subject(s)
Genes, Immunoglobulin , Germinal Center , Gene Conversion , Genes, Immunoglobulin/genetics , Humans , Mutagenesis , Mutation
6.
Methods Mol Biol ; 2421: 231-241, 2022.
Article in English | MEDLINE | ID: mdl-34870823

ABSTRACT

Repertoire sequencing of B cells is the high-throughput profiling of B cell receptors (BCR) expressed on the surface of B cells and of immunoglobulins (Ig) expressed by antibody secreting cells. Each BCR/Ig transcript has a unique complementarity-determining region 3 (CDR3) sequence that can be used to identify and track individual B cell lymphocytes over time and throughout different compartments of the human body. B cell differentiation can be further tracked by assessing the point mutations acquired during affinity maturation via somatic hypermutation (SHM). Here we describe a method for high-throughput sequencing of the variable region of Ig heavy-chain transcripts for repertoire analysis of human B cells on the Illumina Miseq platform.


Subject(s)
High-Throughput Nucleotide Sequencing , B-Lymphocytes , Complementarity Determining Regions/genetics , Humans , Immunoglobulin Heavy Chains/genetics , Receptors, Antigen, B-Cell/genetics
7.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34952892

ABSTRACT

Antibody secreting cells (ASCs) circulate after vaccination and infection and migrate to the BM where a subset known as long-lived plasma cells (LLPCs) persists and secrete antibodies for a lifetime. The mechanisms by which circulating ASCs become LLPCs are not well elucidated. Here, we show that human blood ASCs have distinct morphology, transcriptomes, and epigenetics compared with BM LLPCs. Compared with blood ASCs, BM LLPCs have decreased nucleus/cytoplasm ratio but increased endoplasmic reticulum and numbers of mitochondria. LLPCs up-regulate pro-survival genes MCL1, BCL2, and BCL-XL while simultaneously down-regulating pro-apoptotic genes HRK1, CASP3, and CASP8 Consistent with reduced gene expression, the pro-apoptotic gene loci are less accessible in LLPCs. Of the pro-survival genes, only BCL2 is concordant in gene up-regulation and loci accessibility. Using a novel in vitro human BM mimetic, we show that blood ASCs undergo similar morphological and molecular changes that resemble ex vivo BM LLPCs. Overall, our study demonstrates that early-minted blood ASCs in the BM microniche must undergo morphological, transcriptional, and epigenetic changes to mature into apoptotic-resistant LLPCs.


Subject(s)
Epigenesis, Genetic , Gene Expression Regulation , Genomic Imprinting , Plasma Cells/cytology , Plasma Cells/metabolism , Adolescent , Adult , Antibody Formation/genetics , Antibody Formation/immunology , Apoptosis/genetics , Biomarkers , Cell Survival , Female , Genetic Heterogeneity , Histocytochemistry , Humans , Immunophenotyping , Male , Middle Aged , Plasma Cells/immunology , Plasma Cells/ultrastructure , Time Factors , Young Adult
8.
medRxiv ; 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-33106819

ABSTRACT

An emerging feature of COVID-19 is the identification of autoreactivity in patients with severe disease that may contribute to disease pathology, however the origin and resolution of these responses remain unclear. Previously, we identified strong extrafollicular B cell activation as a shared immune response feature between both severe COVID-19 and patients with advanced rheumatic disease. In autoimmune settings, this pathway is associated with relaxed peripheral tolerance in the antibody secreting cell compartment and the generation of de novo autoreactive responses. Investigating these responses in COVID-19, we performed single-cell repertoire analysis on 7 patients with severe disease. In these patients, we identify the expansion of a low-mutation IgG1 fraction of the antibody secreting cell compartment that are not memory derived, display low levels of selective pressure, and are enriched for autoreactivity-prone IGHV4-34 expression. Within this compartment, we identify B cell lineages that display specificity to both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against glomerular basement membrane, and describe progressive, broad, clinically relevant autoreactivity within these patients correlated with disease severity. Importantly, we identify anti-carbamylated protein responses as a common hallmark and candidate biomarker of broken peripheral tolerance in severe COVID-19. Finally, we identify the contraction of this pathway upon recovery, and re-establishment of tolerance standards coupled with a concomitant loss of acute-derived ASCs irrespective of antigen specificity. In total, this study reveals the origins, breadth, and resolution of acute-phase autoreactivity in severe COVID-19, with significant implications in both early interventions and potential treatment of patients with post-COVID sequelae.

9.
Front Immunol ; 10: 2458, 2019.
Article in English | MEDLINE | ID: mdl-31681331

ABSTRACT

The increasingly recognized role of different types of B cells and plasma cells in protective and pathogenic immune responses combined with technological advances have generated a plethora of information regarding the heterogeneity of this human immune compartment. Unfortunately, the lack of a consistent classification of human B cells also creates significant imprecision on the adjudication of different phenotypes to well-defined populations. Additional confusion in the field stems from: the use of non-discriminatory, overlapping markers to define some populations, the extrapolation of mouse concepts to humans, and the assignation of functional significance to populations often defined by insufficient surface markers. In this review, we shall discuss the current understanding of human B cell heterogeneity and define major parental populations and associated subsets while discussing their functional significance. We shall also identify current challenges and opportunities. It stands to reason that a unified approach will not only permit comparison of separate studies but also improve our ability to define deviations from normative values and to create a clean framework for the identification, functional significance, and disease association with new populations.


Subject(s)
B-Lymphocytes, Regulatory/immunology , B-Lymphocytes/immunology , Immunologic Memory/immunology , Plasma Cells/immunology , Animals , B-Lymphocytes/classification , B-Lymphocytes, Regulatory/metabolism , Cytokines/immunology , Cytokines/metabolism , Humans , Immunity, Humoral/immunology , Immunoglobulin D/immunology , Immunoglobulin D/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Plasma Cells/classification
10.
Immunol Rev ; 284(1): 120-131, 2018 07.
Article in English | MEDLINE | ID: mdl-29944759

ABSTRACT

Understanding antibody repertoires and in particular, the properties and fates of B cells expressing potentially pathogenic antibodies is critical to define the mechanisms underlying multiple immunological diseases including autoimmune and allergic conditions as well as transplant rejection. Moreover, an integrated knowledge of the antibody repertoires expressed by B cells and plasma cells (PC) of different functional properties and longevity is essential to develop new therapeutic strategies, better biomarkers for disease segmentation, and new assays to measure restoration of B-cell tolerance or, at least, of normal B-cell homeostasis. Reaching these goals, however, will require a more precise phenotypic, functional and molecular definition of B-cell and PC populations, and a comprehensive analysis of the antigenic reactivity of the antibodies they express. While traditionally hampered by technical and ethical limitations in human experimentation, new technological advances currently enable investigators to address these questions in a comprehensive fashion. In this review, we shall discuss these concepts as they apply to the study of Systemic Lupus Erythematosus.


Subject(s)
Autoantibodies/immunology , Autoimmunity/immunology , B-Lymphocytes/immunology , Immune Tolerance/immunology , Lupus Erythematosus, Systemic/immunology , Lymphocyte Activation/immunology , Humans , Lupus Erythematosus, Systemic/pathology
11.
Nat Immunol ; 16(7): 755-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26006014

ABSTRACT

Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region VH4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.


Subject(s)
Antibody Diversity/immunology , Antibody-Producing Cells/immunology , Autoantibodies/immunology , Cell Proliferation , Lupus Erythematosus, Systemic/immunology , Acute Disease , Amino Acid Sequence , Antibody Diversity/genetics , Antibody-Producing Cells/metabolism , Autoantibodies/genetics , Autoantibodies/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Base Sequence , Clone Cells/immunology , Clone Cells/metabolism , Flow Cytometry , Humans , Immunoglobulin G/blood , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/metabolism , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Influenza Vaccines/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/metabolism , Molecular Sequence Data , Proteome/analysis , Proteome/immunology , Proteomics/methods , Sequence Homology, Amino Acid , Single-Cell Analysis/methods , Tandem Mass Spectrometry , Tetanus Toxoid/immunology
12.
Dev Cell ; 21(3): 469-78, 2011 Sep 13.
Article in English | MEDLINE | ID: mdl-21920313

ABSTRACT

Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find that closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5, when compared to E13.5, displayed fragmented mitochondria with few cristae, a less-polarized mitochondrial membrane potential, higher reactive oxygen species (ROS) levels, and an open mPTP. Pharmacologic and genetic closing of the mPTP yielded maturation of mitochondrial structure and function, lowered ROS, and increased myocyte differentiation (measured by counting Z bands). Furthermore, myocyte differentiation was inhibited and enhanced with oxidant and antioxidant treatment, respectively, suggesting that redox-signaling pathways lie downstream of mitochondria to regulate cardiac myocyte differentiation.

13.
Prog Pediatr Cardiol ; 31(2): 75-81, 2011 May.
Article in English | MEDLINE | ID: mdl-21603067

ABSTRACT

Cardiac metabolism is finely tuned, and disruption of myocardial bioenergetics can be clinically devastating. Many cardiomyopathies that present early in life are due to disruption of the maturation of these metabolic pathways. However, this bioenergetic maturation begins well before birth, when the embryonic heart is first beginning to beat, and continues into the mature animal. Thus, the changes in energy production seen after birth are actually part of a continuum that coincides with the structural and functional changes that occur as the cardiac myocyte differentiates and the heart undergoes morphogenesis. Therefore, although bioenergetics and mitochondrial biology have not been studied in great detail in the developing heart, bioenergetic maturation should be considered an important component of normal myocyte differentiation.Although events occurring after birth will be discussed, this review will focus on the changes in bioenergetics and mitochondrial biology that coincide with myocyte differentiation and cardiac morphogenesis. The relationship of these changes to the etiology and presentation of cardiomyopathies will be used as a starting point for this discussion. Then, after reviewing cardiac development and mitochondrial biology, the published data on bioenergetics and mitochondrial structure and function in the developing heart will be presented. Finally, the case will be made that mitochondria may be critical regulators of cardiac myocyte differentiation and cardiac development.

14.
Biochim Biophys Acta ; 1797(6-7): 913-21, 2010.
Article in English | MEDLINE | ID: mdl-20347716

ABSTRACT

Mitochondria are dynamic organelles that constantly undergo fission, fusion, and movement. Increasing evidence indicates that these dynamic changes are intricately related to mitochondrial function, suggesting that mitochondrial form and function are linked. Calcium (Ca2+) is one signal that has been shown to both regulate mitochondrial fission in various cell types and stimulate mitochondrial enzymes involved in ATP generation. However, although Ca2+ plays an important role in adult cardiac muscle cells for excitation-metabolism coupling, little is known about whether Ca2+ can regulate their mitochondrial morphology. Therefore, we tested the role of Ca2+ in regulating cardiac mitochondrial fission. We found that neonatal and adult cardiomyocyte mitochondria undergo rapid and transient fragmentation upon a thapsigargin (TG)- or KCl-induced cytosolic Ca2+ increase. The mitochondrial fission protein, DLP1, participates in this mitochondrial fragmentation, suggesting that cardiac mitochondrial fission machinery may be regulated by intracellular Ca2+ signaling. Moreover, the TG-induced fragmentation was also associated with an increase in reactive oxygen species (ROS) formation, suggesting that activation of mitochondrial fission machinery is an early event for Ca2+-mediated ROS generation in cardiac myocytes. These results suggest that Ca2+, an important regulator of muscle contraction and energy generation, also dynamically regulates mitochondrial morphology and ROS generation in cardiac myocytes.


Subject(s)
Calcium/metabolism , Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Calcium Signaling/drug effects , Cells, Cultured , Dynamins , GTP Phosphohydrolases/metabolism , In Vitro Techniques , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/ultrastructure , Mitochondrial Proteins/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/ultrastructure , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Thapsigargin/pharmacology
15.
J Mol Cell Cardiol ; 46(6): 811-20, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19281816

ABSTRACT

Mitochondria play a critical role in cellular energy metabolism, Ca(2+) homeostasis, reactive oxygen species generation, apoptosis, aging, and development. Many recent publications have shown that a continuous balance of fusion and fission of these organelles is important in maintaining their proper function. Therefore, there is a steep correlation between the form and function of mitochondria. Many major proteins involved in mitochondrial fusion and fission have been identified in different cell types, including heart. However, the functional role of mitochondrial dynamics in the heart remains, for the most part, unexplored. In this review we will cover the recent field of mitochondrial dynamics and its physiological and pathological implications, with a particular emphasis on the experimental and theoretical basis of mitochondrial dynamics in the heart.


Subject(s)
Mitochondria, Heart/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Animals , Cell Death/physiology , Humans , Mitochondria/physiology , Mitochondria, Heart/physiology , Models, Biological
16.
J Cell Physiol ; 212(2): 498-508, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17443673

ABSTRACT

Mitochondrial fission and fusion are the main components mediating the dynamic change of mitochondrial morphology observed in living cells. While many protein factors directly participating in mitochondrial dynamics have been identified, upstream signals that regulate mitochondrial morphology are not well understood. In this study, we tested the role of intracellular Ca(2+) in regulating mitochondrial morphology. We found that treating cells with the ER Ca(2+)-ATPase inhibitor thapsigargin (TG) induced two phases of mitochondrial fragmentation. The initial fragmentation of mitochondria occurs rapidly within minutes dependent on an increase in intracellular Ca(2+) levels, and Ca(2+) influx into mitochondria is necessary for inducing mitochondrial fragmentation. The initial mitochondrial fragmentation is a transient event, as tubular mitochondrial morphology was restored as the Ca(2+) level decreased. We were able to block the TG-induced mitochondrial fragmentation by inhibiting mitochondrial fission proteins DLP1/Drp1 or hFis1, suggesting that increased mitochondrial Ca(2+) acts upstream to activate the cellular mitochondrial fission machinery. We also found that prolonged incubation with TG induced the second phase of mitochondrial fragmentation, which was non-reversible and led to cell death as reported previously. These results suggest that Ca(2+) is involved in controlling mitochondrial morphology via intra-mitochondrial Ca(2+) signaling as well as the apoptotic process.


Subject(s)
Apoptosis/drug effects , Calcium/metabolism , Enzyme Inhibitors/pharmacology , Hepatocytes/drug effects , Mitochondria, Liver/drug effects , Mitochondrial Membranes/drug effects , Sarcoplasmic Reticulum Calcium-Transporting ATPases/antagonists & inhibitors , Thapsigargin/pharmacology , Animals , Cell Line , Cytochromes c/metabolism , Cytosol/metabolism , Dynamins/genetics , Dynamins/metabolism , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/enzymology , Hepatocytes/metabolism , Hepatocytes/pathology , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/pathology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Signal Transduction/drug effects , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...