Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
J Control Release ; 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38844180

In boron neutron capture therapy (BNCT), boron drugs should exhibit high intratumoral boron concentrations during neutron irradiation, while being cleared from the blood and normal organs. However, it is usually challenging to achieve such tumor accumulation and quick clearance simultaneously in a temporally controlled manner. Here, we developed a polymer-drug conjugate that can actively control the clearance of the drugs from the blood. This polymer-drug conjugate is based on a biocompatible polymer that passively accumulates in tumors. Its side chains were conjugated with the low-molecular-weight boron drugs, which are immediately excreted by the kidneys, via photolabile linkers. In a murine subcutaneous tumor model, the polymer-drug conjugate could accumulate in the tumor with the high boron concentration ratio of the tumor to the surrounding normal tissue (~10) after intravenous injection while a considerable amount remained in the bloodstream as well. Photoirradiation to blood vessels through the skin surface cleaved the linker to release the boron drug in the blood, allowing for its rapid clearance from the bloodstream. Meanwhile, the boron concentration in the tumor which was not photoirradiated could be maintained high, permitting strong BNCT effects. In clinical BNCT, the dose of thermal neutrons to solid tumors is determined by the maximum radiation exposure to normal organs. Thus, our polymer-drug conjugate may enable us to increase the therapeutic radiation dose to tumors in such a practical situation.

2.
Sci Technol Adv Mater ; 25(1): 2338785, 2024.
Article En | MEDLINE | ID: mdl-38646148

Lipid nanoparticles (LNPs) coated with functional and biocompatible polymers have been widely used as carriers to deliver oligonucleotide and messenger RNA therapeutics to treat diseases. Poly(ethylene glycol) (PEG) is a representative material used for the surface coating, but the PEG surface-coated LNPs often have reduced cellular uptake efficiency and pharmacological activity. Here, we demonstrate the effect of pH-responsive ethylenediamine-based polycarboxybetaines with different molecular weights as an alternative structural component to PEG for the coating of LNPs. We found that appropriate tuning of the molecular weight around polycarboxybetaine-modified LNP, which incorporated small interfering RNA, could enhance the cellular uptake and membrane fusion potential in cancerous pH condition, thereby facilitating the gene silencing effect. This study demonstrates the importance of the design and molecular length of polymers on the LNP surface to provide effective drug delivery to cancer cells.


The study presents the unique characteristics of small interfering RNA (siRNA)-loaded lipid nanoparticles (LNPs) with different lengths of PGlu(DET-Car), revealing the length of PGlu(DET-Car) critically affects the formation of a stable LNP, the cellular uptake, membrane fusion, and gene silencing abilities.

3.
Adv Sci (Weinh) ; 11(7): e2304171, 2024 Feb.
Article En | MEDLINE | ID: mdl-38030413

Nano-sized contrast agents (NCAs) hold potential for highly specific tumor contrast enhancement during magnetic resonance imaging. Given the quantity of contrast agents loaded into a single nano-carrier and the anticipated relaxation effects, the current molecular design approaches its limits. In this study, a novel molecular mechanism to augment the relaxation of NCAs is introduced and demonstrated. NCA formation is driven by the intramolecular self-folding of a single polymer chain that possesses systematically arranged hydrophilic and hydrophobic segments in water. Utilizing this self-folding molecular design, the relaxivity value can be elevated with minimal loading of gadolinium complexes, enabling sharp tumor imaging. Furthermore, the study reveals that this NCA can selectively accumulate into tumor tissues, offering effective anti-tumor results through gadolinium neutron capture therapy. The efficacy and versatility of this self-folding molecular design underscore its promise for cancer diagnosis and treatment.


Drug Carriers , Neoplasms , Humans , Contrast Media/chemistry , Gadolinium/chemistry , Macromolecular Substances , Neoplasms/diagnostic imaging , Neoplasms/drug therapy
4.
J Control Release ; 360: 928-939, 2023 08.
Article En | MEDLINE | ID: mdl-37495117

The success of gene therapy relies on gene nanocarriers to achieve therapeutic effects in vivo. Surface shielding of poly(ethylene glycol) (PEG), known as PEGylation, onto gene delivery carriers is a predominant strategy for extending blood circulation and improving therapeutic outcomes in vivo. Nevertheless, PEGylation frequently compromises the transfection efficiency by decreasing the interactions with the cellular membrane of the targeted cells, thereby preventing the cellular uptake and the subsequent endosomal escape. Herein, we developed a stepwise pH-responsive polyplex micelle for the plasmid DNA delivery with the surface covered by ethylenediamine-based polycarboxybetaines. This polyplex micelle switched its surface charge from neutral at pH 7.4 to positive at tumorous and endo-/lysosomal pH (i.e., pH 6.5 and 5.5, respectively), thus enhancing the cellular uptake and facilitating the endosomal escape toward efficient gene transfection. Additionally, the polyplex micelle demonstrated prolonged blood circulation as well as enhanced tumor accumulation, leading to highly effective tumor growth suppression by delivering an antiangiogenic gene. These results suggest the usefulness of a pH-responsive charge-switchable shell polymer on the surface of the polyplex micelle for the efficient nucleic acid delivery.


Micelles , Neoplasms , Humans , DNA , Polymers , Polyethylene Glycols , Transfection , Neoplasms/drug therapy , Hydrogen-Ion Concentration
5.
Biomaterials ; 293: 121987, 2023 02.
Article En | MEDLINE | ID: mdl-36584445

Various cancer cells overexpress L-type amino acid transporter 1 (LAT1) to take up a large number of neutral amino acids such as phenylalanine and methionine, and LAT1 transporter should be a promising target for cancer diagnosis and therapy. However, only a few studies reported drug delivery systems targeting LAT1 probably due to limited knowledge about the interaction between LAT1 and its substrate. Here, we developed polymers having methionine (Met)- or cysteine (Cys)-like structures on their side chains to examine their affinity with LAT1. While both the Met- and Cys-modified polymers exhibited efficient cellular uptake selectively in cancer cells, the Met-modified polymers exhibited higher cellular uptake efficiency in an LAT1-selective manner than the Cys-modified polymers. In the in vivo study, the intraperitoneally injected Met-modified polymers showed appreciable tumor-selective accumulation in the peritoneal dissemination model, and importantly, Met-modified polymers conjugated with photosensitizers exhibited significant therapeutic effects upon photoirradiation with reduced photochemical damage to normal organs. Our results may provide important knowledge about the polymer-LAT1 interaction, and the Met-modified polymers should offer a new concept for designing LAT1-targeting drug delivery systems.


Amino Acids , Neoplasms , Humans , Neoplasms/metabolism , Methionine/metabolism , Racemethionine , Amino Acid Transport Systems , Polymers/metabolism , Sulfur/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism
6.
Pharm Res ; 40(1): 157-165, 2023 Jan.
Article En | MEDLINE | ID: mdl-36307662

PURPOSE: Controlling small interfering RNA (siRNA) activity by external stimuli is useful to exert a selective therapeutic effect at the target site. This study aims to develop a technology to control siRNA activity in a thermo-responsive manner, which can be utilized even at temperatures close to body temperature. METHODS: siRNA was conjugated with a thermo-responsive copolymer that was synthesized by copolymerization of N-isopropylacrylamide (NIPAAm) and hydrophilic N,N-dimethylacrylamide (DMAA) to permit thermally controlled interaction between siRNA and an intracellular gene silencing-related protein by utilizing the coil-to-globule phase transition of the copolymer. The composition of the copolymer was fine-tuned to obtain lower critical solution temperature (LCST) around body temperature, and the phase transition behavior was evaluated. The cellular uptake and gene silencing efficiency of the copolymer-siRNA conjugates were then investigated in cultured cells. RESULTS: The siRNA conjugated with the copolymer with LCST of 38.0°C exhibited ~ 11.5 nm of the hydrodynamic diameter at 37°C and ~ 9.8 nm of the diameter at 41°C, indicating the coil-globule transition above the LCST. In line with this LCST behavior, its cellular uptake and gene silencing efficiency were enhanced when the temperature was increased from 37°C to 41°C. CONCLUSION: By fine-tuning the LCST behavior of the copolymer that was conjugated with siRNA, siRNA activity could be controlled in a thermo-responsive manner around the body temperature. This technique may offer a promising approach to induce therapeutic effects of siRNA selectively in the target site even in the in vivo conditions.


Body Temperature , Polymers , RNA, Small Interfering/genetics , Temperature , Gene Silencing
7.
Cancer Sci ; 114(3): 1086-1094, 2023 Mar.
Article En | MEDLINE | ID: mdl-36341512

5-Aminolevulinic acid (5-ALA) is an amino acid that can be metabolized into a photosensitizer, protoporphyrin IX (PpIX) selectively in a tumor cell, permitting minimally invasive photodynamic diagnosis/therapy. However, some malignant tumor cells have excess intracellular labile iron and facilitate the conversion of PpIX into heme, which compromises the therapeutic potency of 5-ALA. Here, we examined the potential of chelation of such unfavorable intratumoral labile iron in photodynamic therapy (PDT) with 5-ALA hydrochloride, using polymeric iron chelators that we recently developed. The polymeric iron chelator efficiently inactivated the intracellular labile iron in cultured cancer cells and importantly enhanced the accumulation of PpIX, thereby improving the cytotoxicity upon photoirradiation. Even in in vivo study with subcutaneous tumor models, the polymeric iron chelator augmented the intratumoral accumulation of PpIX and the PDT effect. This study suggests that our polymeric iron chelator could be a tool for boosting the effect of 5-ALA-induced PDT by modulating tumor microenvironment.


Aminolevulinic Acid , Photochemotherapy , Humans , Aminolevulinic Acid/pharmacology , Photosensitizing Agents/chemistry , Iron Chelating Agents/pharmacology , Iron , Polymers , Protoporphyrins , Cell Line, Tumor
8.
Cancer Sci ; 113(12): 4339-4349, 2022 Dec.
Article En | MEDLINE | ID: mdl-36047963

Lipid nanoparticles (LNPs) have been commonly used as a vehicle for nucleic acids, such as small interfering RNA (siRNA); the surface modification of LNPs is one of the determinants of their delivery efficiency especially in systemic administration. However, the applications of siRNA-encapsulated LNPs are limited due to a lack effective systems to deliver to solid tumors. Here, we report a smart surface modification using a charge-switchable ethylenediamine-based polycarboxybetaine for enhancing tumor accumulation via interaction with anionic tumorous tissue constituents due to selective switching to cationic charge in response to cancerous acidic pH. Our polycarboxybetaine-modified LNP could enhance cellular uptake in cancerous pH, resulting in facilitated endosomal escape and gene knockdown efficiency. After systemic administration, the polycarboxybetaine-modified LNP accomplished high tumor accumulation in SKOV3-luc and CT 26 subcutaneous tumor models. The siPLK-1-encapsulated LNP thereby accomplished significant tumor growth inhibition. This study demonstrates a promising potential of the pH-responsive polycarboxybetaine as a material for modifying the surface of LNPs for efficient nucleic acid delivery.


Nanoparticles , Neoplasms , Mice , Animals , RNA, Small Interfering/genetics , Lipids , Neoplasms/drug therapy , Neoplasms/genetics , Hydrogen-Ion Concentration
9.
J Control Release ; 346: 392-404, 2022 06.
Article En | MEDLINE | ID: mdl-35461967

The Enhanced Permeability and Retention (EPR) effect is a golden strategy for the nanoparticle (NP)-based targeting of solid tumors, and the surface property of NPs might be a determinant on their targeting efficiency. Poly(ethylene glycol) (PEG) is commonly used as a shell material; however, it has been pointed out that PEG-coated NPs may exhibit accumulation near tumor vasculature rather than having homogenous intratumor distribution. The PEG shell plays a pivotal role on prolonged blood circulation of NPs but potentially impairs the intratumor retention of NPs. In this study, we report on a shell material to enhance tumor-targeted delivery of NPs by maximizing the EPR effect: polyzwitterion based on ethylenediamine-based carboxybetaine [PGlu(DET-Car)], which shows the changeable net charge responding to surrounding pH. The net charge of PGlu(DET-Car), is neutral at physiological pH 7.4, allowing it to exhibit a stealth property during the blood circulation; however, it becomes cationic for tissue-interactive performance under tumorous acidic conditions owing to the stepwise protonation behavior of ethylenediamine. Indeed, the PGlu(DET-Car)-coated NPs (i.e., gold NPs in the present study) exhibited prolonged blood circulation and remarkably enhanced tumor accumulation and retention than PEG-coated NPs, achieving 32.1% of injected dose/g of tissue, which was 4.2 times larger relative to PEG-coated NPs. Interestingly, a considerable portion of PGlu(DET-Car)-coated NPs clearly penetrated into deeper tumor sites and realized the effective accumulation in hypoxic regions, probably because the cationic net charge of PGlu(DET-Car) is augmented in more acidic hypoxic regions. This study suggests that the changeable net charge on the NP surface in response to tumorous acidic conditions is a promising strategy for tumor-targeted delivery based on the EPR effect.


Nanoparticles , Cations , Cell Line, Tumor , Ethylenediamines , Nanoparticles/chemistry , Polyethylene Glycols/chemistry
10.
Breed Sci ; 71(4): 474-483, 2021 Sep.
Article En | MEDLINE | ID: mdl-34912174

Brown spot (BS) caused by Bipolaris oryzae is a serious disease of rice and decreases grain yield. Breeding for BS resistance is an economical solution but has not hitherto been achieved. To develop a practical BS-resistant variety, we introduced a chromosomal segment including a quantitative trait locus (QTL) for BS resistance, qBSfR11, derived from the BS-resistant local resource 'Tadukan', into the genetic background of the high-yielding but susceptible 'Mienoyume'. Resistance is controlled by a single recessive gene in a 1.3-Mbp region. We named this gene bsr1 (brown spot resistance 1). The near-isogenic line bsr1-NIL had a greater yield with larger grain width than Mienoyume but similar other agronomic traits in fields where BS was mild; it had a significantly lower BS disease score and a 28.8% higher yield in fields where BS was more severe, and it showed resistance to multiple isolates of BS fungus. It showed stable resistance to BS and had excellent agricultural traits in the presence of BS. We developed the bsr1-NIL with resistance to BS and applied it for variety registration to Ministry of Agriculture, Forestry and Fisheries in Japan as 'Mienoyume BSL'. This is the first report for the BS resistant rice variety bred using marker-assisted selection.

11.
ACS Appl Mater Interfaces ; 13(46): 54850-54859, 2021 Nov 24.
Article En | MEDLINE | ID: mdl-34756033

The construction of enzyme delivery systems, which can control enzymatic activity at a target site, is important for efficient enzyme-prodrug therapy/diagnosis. Herein we report a facile technique to construct a systemically applicable ß-galactosidase (ß-Gal)-loaded ternary complex comprising tannic acid (TA) and phenylboronic acid-conjugated polymers through sequential self-assembly in aqueous solution. At physiological conditions, the ternary complex exhibited a hydrodynamic diameter of ∼40 nm and protected the loaded ß-Gal from unfavorable degradation by proteinase. Upon cellular internalization, the ternary complex recovered ß-Gal activity by releasing the loaded ß-Gal. The intravenously injected ternary complex thereby delivered ß-Gal to the target tumor in a subcutaneous tumor model and exerted enhanced and selective enzymatic activity at the tumor site. Sequential self-assembly with TA and phenylboronic acid-conjugated polymers may offer a novel approach for enzyme-prodrug theragnosis.


Boronic Acids/metabolism , Nanoparticles/metabolism , Neoplasms/metabolism , Polymers/metabolism , Tannins/metabolism , beta-Galactosidase/metabolism , Animals , Boronic Acids/chemistry , Cell Line, Tumor , Female , Hydrodynamics , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Nanoparticles/chemistry , Neoplasms/diagnosis , Particle Size , Polymers/chemical synthesis , Polymers/chemistry , Surface Properties , Tannins/chemistry , beta-Galactosidase/administration & dosage , beta-Galactosidase/blood
12.
ACS Appl Bio Mater ; 4(10): 7402-7407, 2021 10 18.
Article En | MEDLINE | ID: mdl-35006695

Transporter ASCT2, which predominantly imports glutamine (Gln), is overexpressed in a variety of cancer cells, and targeting ASCT2 is expected to be a promising approach for tumor diagnosis and therapy. In this work, we designed a series of glutamine-modified poly(l-lysine) (PLys(Gln)) homopolymers and PEG-PLys(Gln) block copolymers and investigated their tumor-targeting abilities. With increasing degree of polymerization in the PLys(Gln) homopolymers, their cellular uptake was gradually enhanced through multivalent interactions with ASCT2. The performance of PEG-PLys(Gln) in blood circulation and tumor accumulation could be controlled by tuning of the molecular weight of PEG. Our results highlight the utility of molecular recognition in ASCT2/PLys(Gln) for tumor targeting through systemic administration.


Glutamine , Neoplasms , Amino Acid Transport System ASC/genetics , Humans , Minor Histocompatibility Antigens/genetics , Neoplasms/diagnosis , Polymers
13.
Int J Mol Sci ; 21(22)2020 Nov 18.
Article En | MEDLINE | ID: mdl-33218045

Abdominal aortic aneurysm (AAA) is a life-threatening disease. However, no systemically injectable drug has been approved for AAA treatment due to low bioavailability. Polymeric micelles are nanomedicines that have the potential to improve therapeutic efficacy by selectively delivering drugs into disease sites, and research has mainly focused on cancer treatments. Here, we developed a statin-loaded polymeric micelle to treat AAAs in rat models. The micelle showed medicinal efficacy by preventing aortic aneurysm expansion in a dose-dependent manner. Furthermore, the micelle-injected group showed decreased macrophage infiltration and decreased matrix metalloproteinase-9 activity in cases of AAA.


Aortic Aneurysm, Abdominal/drug therapy , Drug Delivery Systems , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Nanoparticles , Animals , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Disease Models, Animal , Hydroxymethylglutaryl-CoA Reductase Inhibitors/chemistry , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Macrophages/metabolism , Macrophages/pathology , Male , Matrix Metalloproteinase 9/metabolism , Micelles , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Rats , Rats, Sprague-Dawley
14.
Biomacromolecules ; 21(9): 3826-3835, 2020 09 14.
Article En | MEDLINE | ID: mdl-32786730

Tannic acid (TA) can form stable complexes with proteins, attracting significant attention as protein delivery systems. However, its systemic application has been limited due to nonspecific interaction. Here, we report a simple technique to prepare systemically applicable protein delivery systems using sequential self-assembly of a protein, TA, and phenylboronic acid-conjugated PEG-poly(amino acid) block copolymers in aqueous solution. Mixing the protein and TA in aqueous solution led to covering of the protein with TA, and subsequent addition of the copolymer resulted in the formation of boronate esters between TA and copolymers, constructing the core-shell-type ternary complex. The ternary complex covered with PEG exhibited a small hydrodynamic diameter of ∼10-20 nm and prevented an unfavorable interaction with serum components, thereby accomplishing significantly prolonged blood circulation and enhanced tumor accumulation in a subcutaneous tumor model. The technique utilizing supramolecular self-assembly may serve as a novel approach for designing protein delivery systems.


Polyethylene Glycols , Tannins , Boronic Acids , Micelles , Polymers
15.
Biomaterials ; 235: 119804, 2020 03.
Article En | MEDLINE | ID: mdl-31991339

Gemcitabine (GEM) is a powerful anticancer drug for various cancers. However, the anticancer efficacy and the side effects should be addressed for effective therapeutics. To this end, we created a GEM-conjugated polymer (P-GEM) based on cyclic acetal linkage as a delivery carrier of GEM. The obtained P-GEM stably conjugated GEM at physiological pH (i.e., bloodstream), but released GEM in response to acidic environments such as endosome/lysosome. After systemic administration of P-GEM for mice bearing subcutaneous tumors, it achieved prolonged blood circulation and enhanced tumor accumulation relative to free GEM system. In addition, the polymer-drug conjugate structure of P-GEM realized effective distribution in the tumor tissues toward the induction of apoptosis in most areas of the tumor sites. Of note, the molecular design of P-GEM achieved minimal accumulation in normal tissues, resulting in negligible GEM-derived adverse effects (e.g., gastrointestinal toxicity and hematotoxicity). Ultimately, even four times smaller dose of P-GEM on a GEM basis realized comparable/higher tumor growth suppression effect for two distinct pancreatic tumor models, compared to free GEM system. The obtained results suggest the huge potential of the present design of GEM-conjugated polymer for anticancer therapeutics.


Acetals , Pancreatic Neoplasms , Animals , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Mice , Polymers , Gemcitabine
16.
Sci Rep ; 7(1): 6077, 2017 07 20.
Article En | MEDLINE | ID: mdl-28729677

Increased glutamine uptake toward the elevated glutaminolysis is one of the hallmarks of tumour cells. This aberrant glutamine metabolism has recently attracted considerable attention as a diagnostic and therapeutic target. Herein, we developed glutamine-functionalized polymer to achieve a selective high affinity to tumour cells overexpressing glutaminolysis-related transporter ASCT2. In in vitro study, our developed polymer exhibited faster and higher cellular uptake in tumour cells than that in normal cells. Uptake inhibition study revealed the dominant contribution of ASCT2 to the polymer-cell interaction. Furthermore, the binding affinity of the polymer to tumour cells was estimated to be comparable to that of the potent ligand molecules reported in the literature. In in vivo study, the polymer showed prolonged retention at tumour site after intratumoral injection. This study offers a novel approach for designing tumour cell-binding synthetic polymers through the recognition of dense transporters related to tumour-associated metabolism.


Amino Acid Transport System ASC/metabolism , Glutamine/metabolism , Polymers , Amino Acid Transport System ASC/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Heterografts , Humans , Immunohistochemistry , Intracellular Space/metabolism , Mice , Polymers/chemistry , Polymers/metabolism
...