Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 459: 140334, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-38981379

ABSTRACT

Avocado ripening entails intricate physicochemical transformations resulting in desirable characteristics for consumption; however, its impact on specific metabolites and its cultivar dependence remains largely unexplored. This study employed LC-MS to quantitatively monitor 30 avocado pulp metabolites, including phenolic compounds, amino acids, nucleosides, vitamins, phytohormones, and related compounds, from unripe to overripe stages, in three commercial varieties (Hass, Fuerte, and Bacon). Multivariate statistical analysis revealed significant metabolic variations between cultivars, leading to the identification of potential varietal markers. Most monitored metabolites exhibited dynamic quantitative changes. Although phenolic compounds generally increased during ripening, exceptions such as epicatechin and chlorogenic acid were noted. Amino acids and derivatives displayed a highly cultivar-dependent evolution, with Fuerte demonstrating the highest concentrations and most pronounced fluctuations. In contrast to penstemide, uridine and abscisic acid levels consistently increased during ripening. Several compounds characteristic of the Bacon variety were delineated but require further research for identification and role elucidation.


Subject(s)
Fruit , Persea , Phytochemicals , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Liquid Chromatography-Mass Spectrometry , Persea/growth & development , Persea/chemistry , Persea/metabolism , Phenols/metabolism , Phenols/analysis , Phenols/chemistry , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/metabolism
2.
Plants (Basel) ; 12(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37631215

ABSTRACT

Spain dominates avocado production in Europe, with the Hass variety being the most prominent. Despite this, Spanish production satisfies less than 10% of the overall avocado demand in Europe. Consequently, the European avocado market heavily relies on imports from overseas, primarily sourced from Peru and Chile. Herein, a comprehensive characterization of the metabolic profile of Hass avocado fruits from Spain, Peru, and Chile, available in the European market throughout the year, was carried out. The determination of relevant substances was performed using high- and low-resolution RP-LC-MS. Remarkable quantitative differences regarding phenolic compounds, amino acids, and nucleosides were observed. Principal component analysis revealed a natural clustering of avocados according to geographical origin. Moreover, a specific metabolic pattern was established for each avocado-producing country using supervised partial least squares discriminant analysis. Spanish fruits exhibited high levels of coumaric acid malonyl-hexose II, coumaric acid hexose II, and ferulic acid hexose II, together with considerably low levels of pantothenic acid and uridine. Chilean avocado fruits presented high concentrations of abscisic acid, uridine, ferulic acid, succinic acid, and tryptophan. Fruits from Peru showed high concentrations of dihydroxybenzoic acid hexose, alongside very low levels of p-coumaric acid, ferulic acid, coumaric acid malonyl-hexose I, and ferulic acid hexose II.

3.
J Agric Food Chem ; 71(14): 5674-5685, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36988630

ABSTRACT

Avocado fruit growth and development, unlike that of other fruits, is characterized by the accumulation of oil and C7 sugars (in most fruits, the carbohydrates that prevail are C6). There are five essential carbohydrates which constitute 98% of the total content of soluble sugars in this fruit; these are fructose, glucose, sucrose, d-mannoheptulose, and perseitol, which together with quinic acid and chlorogenic acid have been the analytes under study in this work. After applying an efficient extraction procedure, a novel methodology based on hydrophilic interaction liquid chromatography coupled to mass spectrometry was applied to determine the levels of these seven substances in tissues─exocarp, seed, and mesocarp─from avocado fruits of two different varieties scarcely studied, Bacon and Fuerte, at three different ripening stages. Quantitative characterization of the selected tissues was performed, and the inter-tissue distribution of metabolites was described. For both varieties, d-mannoheptulose was the major component in the mesocarp and exocarp, whereas perseitol was predominant in the seed, followed by sucrose and d-mannoheptulose. Sucrose was found to be more abundant in seed tissues, with much lower concentrations in avocado mesocarp and exocarp. Quinic acid showed a predominance in the exocarp, and chlorogenic acid was exclusively determined in exocarp samples.


Subject(s)
Chromatography, Liquid , Mass Spectrometry , Persea , Pork Meat , Carbohydrates/analysis , Chlorogenic Acid/analysis , Chromatography, Liquid/methods , Fruit/anatomy & histology , Fruit/chemistry , Mannoheptulose/analysis , Mass Spectrometry/methods , Persea/anatomy & histology , Persea/chemistry , Pork Meat/analysis , Quinic Acid/analysis , Seeds/chemistry , Seeds/metabolism , Sucrose/analysis
4.
Food Chem ; 394: 133447, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35717919

ABSTRACT

When the recipient of the product is relatively distant from the production area, it is necessary to use cold storage and controlled humidity to transport the avocado fruits. One of the main advantages of local avocado consumption lies on the possibility of prolonging on-tree maturation; this could foreseeably modify the metabolic profile of the fruit that reaches the consumer. In this work, the effect of prolonged on tree maturation (during different time intervals) on the final composition of avocado fruit (at edible ripeness) was evaluated and compared with the impact of the same periods after prolonged cold storage. The quantitative evolution of nine bioactive metabolites (7 phenolic compounds, pantothenic and abscisic acids) over 40 days (10-days intervals) was studied by using a solid-liquid extraction protocol and a LC-MS methodology. The results were discussed both considering the quantitative evolution of each individual compound and the sum of all of them.


Subject(s)
Persea , Abscisic Acid/metabolism , Chromatography, Liquid , Fruit/metabolism , Persea/metabolism , Trees
5.
Mol Biol Rep ; 48(1): 335-346, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33389534

ABSTRACT

Sixteen pomological traits were employed to characterize the diversity of 30 fig accessions collected mainly from Southeastern Tunisia and maintained at CFPA 'El Gordhab', Tataouine, in Southeastern Tunisia. Additionally, 13 simple sequence repeat (SSR) loci were analyzed to detect the genetic diversity of the 30 fig accessions. In this study, qualitative data (fruit shape, fruit external color, fruit internal color, abscission of the stalk from the twig, skin peeling, fruit skin firmness) showed morphological variation within accessions. A highly significant difference (p < .01) among accessions was revealed for all the quantitative traits. The first three components (PC1, PC2, and PC3) of PCA accounted for 52.99% of the total variability. PC1, PC2, and PC3 accounted respectively for 28.02, 13.05, and 11.91% of the total variance. The most discriminating morphological parameters were fruit length and diameter, stalk length and diameter, neck length and diameter, stalk and flesh thickness, fruit shape, skin peeling, and skin firmness. Concerning the molecular results, 40 alleles were revealed. The number of alleles ranged between 2 to 6 with a mean of 3.08 alleles per locus. The observed heterozygosity (Ho) ranged from 0.03 (LMFC21, LMFC23, and LMFC32) to 0.83 (LMFC30) with an average of 0.43. The expected heterozygosity (He) varied from 0.03 (LMFC21, LMFC 23 and LMFC32) to 0.74 (LMFC30) with an average of 0.37. UPMGA cluster analysis and PCA grouped the accessions in 6 groups. Our results showed that the SSR markers used detected low genetic diversity within the accessions studied.


Subject(s)
Ficus/genetics , Genetic Variation , Microsatellite Repeats/genetics , Alleles , Ficus/growth & development , Heterozygote , Phenotype , Tunisia
6.
Hereditas ; 152: 1, 2015.
Article in English | MEDLINE | ID: mdl-28096760

ABSTRACT

BACKGROUND: The common fig (Ficus carica L.) is a gynodioecious species with two sexual forms: male trees (caprifigs) with male and female flowers and female trees that produce only female flowers that will result in the edible fig syconium. In this study the genetic diversity of 20 Tunisian accessions of caprifig is analyzed using SSR markers previously developed for this crop. RESULTS: The results revealed that the 13 pairs of primers used amplified a total of 37 alleles in the accessions studied. The number of alleles per locus ranged from two to six, with a mean value of 2.85 alleles per locus. Observed and expected heterozygosities showed mean values of 0.33 and 0.29 respectively. UPGMA cluster analysis and Principal Component Analysis grouped the caprifig accessions analyzed in three groups. CONCLUSION: The results obtained show a low genetic diversity in the Tunisian accessions of caprifig studied and, in spite of analyzing samples from different geographic regions, no clear groupings based on geographical origin are observed suggesting widespread exchange of caprifig plant material through vegetative propagation among different areas in Tunisia.


Subject(s)
Ficus/genetics , Genetic Variation , Microsatellite Repeats , Alleles , Cluster Analysis , Crops, Agricultural/genetics , DNA, Plant/genetics , Genetic Markers , Heterozygote , Principal Component Analysis
7.
PLoS One ; 8(10): e78467, 2013.
Article in English | MEDLINE | ID: mdl-24167627

ABSTRACT

A common observation in different plant species is a massive abscission of flowers and fruitlets even after adequate pollination, but little is known as to the reason for this drop. Previous research has shown the importance of nutritive reserves accumulated in the flower on fertilization success and initial fruit development but direct evidence has been elusive. Avocado (Persea americana) is an extreme case of a species with a very low fruit to flower ratio. In this work, the implications of starch content in the avocado flower on the subsequent fruit set are explored. Firstly, starch content in individual ovaries was analysed from two populations of flowers with a different fruit set capacity showing that the flowers from the population that resulted in a higher percentage of fruit set contained significantly more starch. Secondly, in a different set of flowers, the style of each flower was excised one day after pollination, once the pollen tubes had reached the base of the style, and individually fixed for starch content analysis under the microscope once the fate of its corresponding ovary (that remained in the tree) was known. A high variability in starch content in the style was found among flowers, with some flowers having starch content up to 1,000 times higher than others, and the flowers that successfully developed into fruits presented significantly higher starch content in the style at anthesis than those that abscised. The relationship between starch content in the ovary and the capacity of set of the flower together with the correlation found between the starch content in the style and the fate of the ovary support the hypothesis that the carbohydrate reserves accumulated in the flower at anthesis are related to subsequent abscission or retention of the developing fruit.


Subject(s)
Flowers/metabolism , Persea/metabolism , Starch/metabolism , Fruit/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL