Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Genet ; 55(3): 430-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594914

ABSTRACT

Genetic research for the assessment of mastitis and milk production traits simultaneously has a long history. The main issue that arises in this context is the known existence of a positive correlation between the risk of mastitis and lactation performance due to selection. The transcriptome-wide association study (TWAS) approach endeavors to combine the expression quantitative trait loci and genome-wide association study summary statistics to decode complex traits or diseases. Accordingly, we used the farmgtex project results as a complete bovine database for mastitis and milk production. The results of colocalization and TWAS approaches were used for the detection of functional associated candidate genes with milk production and mastitis traits on multiple tissue-based transcriptome records. Also, we used the david database for gene ontology to identify significant terms and associated genes. For the identification of interaction networks, the genemania and string databases were used. Also, the available z-scores in TWAS results were used for the calculation of the correlation between tissues. Therefore, the present results confirm that LYNX1, DGAT1, C14H8orf33, and LY6E were identified as significant genes associated with milk production in eight, six, five, and five tissues, respectively. Also, FBXL6 was detected as a significant gene associated with mastitis trait. CLN3 and ZNF34 genes emerged via both the colocalization and TWAS approaches as significant genes for milk production trait. It is expected that TWAS and colocalization can improve our perception of the potential health status control mechanism in high-yielding dairy cows.


Subject(s)
Lactation , Mastitis, Bovine , Milk , Quantitative Trait Loci , Transcriptome , Animals , Mastitis, Bovine/genetics , Cattle/genetics , Female , Lactation/genetics , Milk/metabolism , Genome-Wide Association Study/veterinary
2.
Sci Rep ; 14(1): 6544, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503864

ABSTRACT

Long noncoding RNAs (lncRNAs) are functional bridges connecting the genome with phenotypes by interacting with DNA, mRNA, and proteins. Using publically available acute heat stress (AHS)-related RNA-seq data, we discovered novel lncRNAs and tested their association with AHS along with ~ 8800 known lncRNAs and ~ 28,000 mRNA transcripts. Our pipeline discovered a total of 145 potentially novel-lncRNAs. One of them (Fishcomb_p-value = 0.06) along with another novel transcript (annotated as protein-coding; Fishcomb_p-value = 0.03) were identified as significantly associated with AHS. We found five known-lncRNAs and 134 mRNAs transcripts that were significantly associated with AHS. Four novel lncRNAs interact cis-regulated with 12 mRNA transcripts and are targeted by 11 miRNAs. Also six meta-lncRNAs associate with 134 meta-mRNAs through trans-acting co-expression, each targeted by 15 and 216 miRNAs, respectively. Three of the known-lncRNAs significantly co-expressed with almost 97 of the significant mRNAs (Pearson correlation p-value < 0.05). We report the mentioned three known-lncRNAs (ENSGALT00000099876, ENSGALT00000107573, and ENSGALT00000106323) as the most, significantly regulatory elements of AHS in chicken. It can be concluded that in order to alleviate the adverse effects of AHS on chicken, the manipulation of the three regulatory lncRNAs could lead to a more desirable result than the manipulation of the most significant mRNAs.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Animals , Gene Expression Profiling , Chickens/genetics , Chickens/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/genetics , Heat-Shock Response/genetics , RNA, Messenger/genetics , Genes, Regulator , Gene Regulatory Networks
3.
Front Genet ; 14: 1102136, 2023.
Article in English | MEDLINE | ID: mdl-37205120

ABSTRACT

Heat stress in poultry houses, especially in warm areas, is one of the main environmental factors that restrict the growth of broilers or laying performance of layers, suppresses the immune system, and deteriorates egg quality and feed conversion ratio. The molecular mechanisms underlying the response of chicken to acute heat stress (AHS) have not been comprehensively elucidated. Therefore, the main object of the current work was to investigate the liver gene expression profile of chickens under AHS in comparison with their corresponding control groups, using four RNA-seq datasets. The meta-analysis, GO and KEGG pathway enrichment, WGCNA, machine-learning, and eGWAS analyses were performed. The results revealed 77 meta-genes that were mainly related to protein biosynthesis, protein folding, and protein transport between cellular organelles. In other words, under AHS, the expression of genes involving in the structure of rough reticulum membrane and in the process of protein folding was adversely influenced. In addition, genes related to biological processes such as "response to unfolded proteins," "response to reticulum stress" and "ERAD pathway" were differentially regulated. We introduce here a couple of genes such as HSPA5, SSR1, SDF2L1, and SEC23B, as the most significantly differentiated under AHS, which could be used as bio-signatures of AHS. Besides the mentioned genes, the main findings of the current work may shed light to the identification of the effects of AHS on gene expression profiling of domestic chicken as well as the adaptive response of chicken to environmental stresses.

4.
Front Genet ; 13: 827538, 2022.
Article in English | MEDLINE | ID: mdl-36176302

ABSTRACT

Accurate normalization of the gene expression assays, using housekeeping genes (HKGs), is critically necessary. To do so, selection of a proper set of HKGs for a specific experiment is of great importance. Despite many studies, there is no consensus about the suitable set of HKGs for implementing in the quantitative real-time PCR analyses of chicken tissues. A limited number of HKGs have been widely used. However, wide utilization of a little number of HKGs for all tissues is challenging. The emergence of high-throughput gene expression RNA-seq data has enabled the simultaneous comparison of the stability of multiple HKGs. Therefore, employing the average coefficient of variations of at least three datasets per tissue, we sorted all reliably expressed genes (REGs; with FPKM ≥ 1 in at least one sample) and introduced the top 10 most suitable and stable reference genes for each of the 16 chicken tissues. We evaluated the consistency of the results of five tissues using the same methodology on other datasets. Furthermore, we assessed 96 previously widely used HKGs (WU-HKGs) in order to challenge the accuracy of the previous studies. The New Tuxedo software suite was used for the main analyses. The results revealed novel, different sets of reference genes for each of the tissues with 17 common genes among the top 10 genes lists of 16 tissues. The results did disprove the suitability of WU-HKGs such as Actb, Ldha, Scd, B2m, and Hprt1 for any of the tissues examined. On the contrary, a total of 6, 13, 14, 23, and 32 validated housekeeping genes (V-HKGs) were discovered as the most stable and suitable reference genes for muscle, spleen, liver, heart, and kidney tissues, respectively. Although we identified a few new HKGs usable for multiple tissues, the selection of suitable HKGs is required to be tissue specific. The newly introduced reference genes from the present study, despite lacking experimental validation, will be able to contribute to the more accurate normalization for future expression analysis of chicken genes.

5.
Sci Total Environ ; 796: 149000, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34273825

ABSTRACT

The persistent organic pollutants (POPs) are environmentally stable and highly toxic chemicals that accumulate in living adipose tissue and have a very destructive effect on aquatic ecosystems. To analyze the evolution of the concentration and prevalence of POPs such as α-HCH, ß-HCH, γ-HCH, ∑-HCH, Heptachlor, Aldrin, p,p'-DDE, p,p'-DDT, ∑-DDT, and ∑-OCP in water resources, a search between January 01, 1970, to February 10, 2020, was followed using a systematic review and meta-analysis prevalence. Among the 2306 explored articles in the reconnaissance step, 311 articles with 5315 exemplars, 56 countries, and 4 types of water were included in the meta-analysis study. Among all studied POPs, the concentration of p,p'-DDT in water resources was the highest, especially in drinking water resources. The overall rank order based on the concentration and prevalence of POPs were surface water > drinking water > seawater > groundwater. To identify POPs-contaminated areas, the distance from the mean relative to their distribution was considered. The most to the least polluted areas included: South Africa, India, Turkey, Pakistan, Canada, Hong Kong, and China. The highest carcinogenic risk was observed for ß-HCH (Turkey and China), followed by α-HCH (Mexico). The highest non-carcinogenic risk was identified for Aldrin (all analyzed countries), followed by Dieldrin (Turkey) and γ-HCH (Mexico). The Monte Carlo analysis (under the assumption that γ-HCH has a normal distribution), the mean obtained was 8.22E-07 for children and 3.83E-07 for adults. This is in accordance with the standard risk assessment approach. In terms of percentiles, the Monte-Carlo approach indicates that 75% of child population is under the 1.07E-06 risk and 95% of adults under 7.35E-06.


Subject(s)
Hydrocarbons, Chlorinated , Persistent Organic Pollutants , Adult , Child , DDT/analysis , Ecosystem , Environmental Monitoring , Humans , Hydrocarbons, Chlorinated/analysis , Risk Assessment , Water
SELECTION OF CITATIONS
SEARCH DETAIL