Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 336
Filter
1.
Heliyon ; 10(12): e32600, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975089

ABSTRACT

Objective: To optimise the dosing regimen of meropenem for treating Pseudomonas aeruginosa (PA) infections in critically ill patients with augmented renal clearance (ARC) using pharmacokinetic/pharmacodynamic (PK/PD) principles and Monte Carlo simulation (MCS). Methods: This research involves an MCS based on PK data from patients with ARC and a minimum inhibitory concentration (MIC) distribution of PA. This study simplifies the methods section, focusing on the critical aspects of simulation and target values for effective treatment. Results: The study highlights key findings and emphasises that tailored dosing based on bacterial MIC values is essential for patients with ARC. It also notes that empirical treatment in patients with ARC should consider the MIC distribution, with 2 g every (q) 6 h administered to achieve the PK/PD target, while 3 g q 6 h is effective in inhibiting resistance. Conclusion: Tailored dosing based on bacterial MIC values is crucial for patients with ARC. Prolonged infusion time alone does not enhance efficacy. Empirical treatment in patients with ARC should consider MIC distribution; a dosage of 2 g q 6 h achieves the PK/PD target, while 3 g q 6 h (≥12 g daily) inhibits resistance.

2.
J Org Chem ; 89(13): 9543-9550, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38874168

ABSTRACT

A visible-light-initiated C-H trifluoromethylation of quinoxalin-2(1H)-ones was established using a Z-scheme V2O5/g-C3N4 heterojunction as a recyclable photocatalyst in an inert atmosphere at room temperature under additive-free and mild conditions. A variety of trifluoromethylated quinoxalin-2-(1H)-one derivatives were heterogeneously generated in moderate to high yields, exhibiting good functional group tolerance. Remarkably, the recyclable V2O5/g-C3N4 catalyst could be reused five times with a slight loss of catalytic activity.

3.
Food Sci Nutr ; 12(6): 4443-4458, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38873454

ABSTRACT

The aim of this study is to combine flaxseed oil (FO), rich in α-linolenic acid (ALA), with Sunite sheep tail fat (STF) through a lipase-catalyzed transesterification reaction, in order to produce an edible oil with a fatty acid ratio suitable for human needs. Initially, the optimal conditions for esterification were determined using the Box-Behnken design, with the measurement criterion being the content of ALA at the sn-2 position. The results indicated that the highest content of sn-2 ALA was obtained under the conditions of using 6.8 wt% Lipozyme®RMIM as the catalyst, a reaction temperature of 57°C, a reaction time of 3.3 h, and a substrate mass ratio of 5.6:4.4 for STF and FO. This led to the rapid breaking and recombining of molecular bonds, resulting in the interesterified fat (IF) with the highest content of ALA at the sn-2 position. Comparing STF and FO, IF exhibited excellent fatty acid composition and content. Furthermore, IF had a lower melting point and crystallization temperature compared to STF, and its solid fat content decreased with increasing temperature, completely melting at temperatures above 30°C. Thus, IF is a synthesized fat with excellent properties from both animal and vegetable sources.

4.
Heliyon ; 10(11): e31654, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38828289

ABSTRACT

Osteoarthritis is a chronic degenerative disease based on the degeneration and loss of articular cartilage. Inflammation and aging play an important role in the destruction of the extracellular matrix, in which microRNA (miRNA) is a key point, such as miRNA-34a-5p. Upregulation of miRNA-34a-5p was previously reported in a rat OA model, and its inhibition significantly suppressed interleukin (IL)-1ß-induced apoptosis in rat chondrocytes. However, Oxidative stress caused by reactive oxygen species (ROS) can exacerbate the progression of miRNA regulated OA by mediating inflammatory processes. Thus, oxidative stress effects induced via tert-butyl hydroperoxide (tBHP) in human chondrocytes were assessed in the current research by evaluating mitochondrial ROS production, mitochondrial cyclooxygenase (COX) activity, and cell apoptosis. We also analyzed the activities of antioxidant enzymes including glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD). Additionally, inflammatory factors, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6, IL-8, and IL-24, which contribute to OA development, were detected by enzyme-linked immunosorbent assay (ELISA). The results of this study indicated that miR-34a-5p/silent information regulator 1 (SIRT1)/p53 axis was involved in the ROS-induced injury of human chondrocytes. Moreover, dual-luciferase assay revealed that SIRT1 expression was directly regulated by miR-34a-5p, indicating the presence of a positive feedback loop in the miR-34a-5p/SIRT1/p53 axis that plays an important role in cell survival. However, ROS disrupted the miR-34a-5p/SIRT1/p53 axis, leading to the development of OA, and articular injection of SIRT1 agonist, SRT1720, in a rat model of OA effectively ameliorated OA progression in a dose-dependent manner. Our study confirms that miRNA-34a-5p could participate in oxidative stress responses caused by ROS and further regulate the inflammatory process via the SIRT1/p53 signaling axis, ultimately affecting the onset of OA, thus providing a new treatment strategy for clinical treatment of OA.

5.
J Clin Immunol ; 44(7): 155, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922539

ABSTRACT

PURPOSE: Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS: Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS: The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS: The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.


Subject(s)
Dermatomyositis , Epstein-Barr Virus Infections , Microfilament Proteins , Mutation , Humans , Male , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Dermatomyositis/genetics , Dermatomyositis/diagnosis , Dermatomyositis/immunology , Child , Microfilament Proteins/genetics , Mutation/genetics , Herpesvirus 4, Human , Exome Sequencing , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/diagnosis , Autoantibodies/blood , Autoantibodies/immunology , Phenotype , T-Lymphocytes/immunology
6.
Artif Intell Med ; 153: 102888, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781870

ABSTRACT

BACKGROUND: When treating patients with coronary artery disease and concurrent renal concerns, we often encounter a conundrum: how to achieve a clearer view of vascular details while minimizing the contrast and radiation doses during percutaneous coronary intervention (PCI). Our goal is to use deep learning (DL) to create a real-time roadmap for guiding PCI. To this end, segmentation, a critical first step, paves the way for detailed vascular analysis. Unlike traditional supervised learning, which demands extensive labeling time and manpower, our strategy leans toward semi-supervised learning. This method not only economizes on labeling efforts but also aims at reducing contrast and radiation exposure. METHODS AND RESULTS: CAG data sourced from eight tertiary centers in Taiwan, comprising 500 labeled and 8952 unlabeled images. Employing 400 labels for training and reserving 100 for validation, we built a U-Net based network within a teacher-student architecture. The initial teacher model was updated with 8952 unlabeled images inputted, employing a quality control strategy involving consistency regularization and RandAugment. The optimized teacher model produced pseudo-labels for label expansion, which were then utilized to train the final student model. We attained an average dice similarity coefficient of 0.9003 for segmentation, outperforming supervised learning methods with the same label count. Even with only 5 % labels for semi-supervised training, the results surpassed a supervised method with 100 % labels inputted. This semi-supervised approach's advantage extends beyond single-frame prediction, yielding consistently superior results in continuous angiography films. CONCLUSIONS: High labeling cost hinders DL training. Semi-supervised learning, quality control, and pseudo-label expansion can overcome this. DL-assisted segmentation potentially provides a real-time PCI roadmap and further diminishes radiation and contrast doses.


Subject(s)
Coronary Vessels , Deep Learning , Supervised Machine Learning , Humans , Coronary Vessels/diagnostic imaging , Percutaneous Coronary Intervention/methods , Coronary Artery Disease/diagnostic imaging , Coronary Angiography/methods , Image Processing, Computer-Assisted/methods
7.
Nat Prod Res ; : 1-5, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813681

ABSTRACT

The phenomena of intramolecular self-assembly of bidesmosidic kalopanaxsaponins was identified for the first time in this paper. NMR (1H-NMR, NOESY), transmission electron microscopy (TEM), and molecular dynamics (MD) simulation techniques were used to compare the spatial structures of bidesmosidic kalopanaxsaponins and monodesmosidic kalopanaxsaponins. The results showed that the bidesmosidic kalopanaxsaponins formed a clustered and twisted structure in space, whereas the monodesmosidic kalopanaxsaponins were in an extended state. This discovery confirmed the presence of intramolecular self-assembly in bidesmosidic kalopanaxsaponins.

8.
J Clin Immunol ; 44(4): 102, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38634985

ABSTRACT

PURPOSE: Autoimmunity is a significant feature of APDS1 patients. We aimed to explore the pathogenic immune phenotype and possible mechanisms of autoimmunity in APDS1 patients. METHODS: The clinical records and laboratory data of 42 APDS1 patients were reviewed. Immunophenotypes were evaluated by multiparametric flow cytometry. Autoantibodies were detected via antigen microarray analysis. RESULTS: A total of 42 children with PIK3CD gene mutations were enrolled. Immunological tests revealed increased proportions of effector memory cells (86%) and central memory cells (59%) among CD4+ T cells; increased proportions of effector memory cells (83%) and terminally differentiated effector memory T cells (38%) among CD8+ T cells. Fewer CD3+ T cells and B cells and higher IgG levels were reported in patients with autoimmunity. The proportion of Tregs was decreased, and the proportions of Th9, Tfh, and Tfr cells were increased in APDS1 patients. Among APDS1 patients, higher proportion of Th2 and Tfr cells were found in those with autoimmunity. The proportions of CD11c+ B and CD21lo B cells in patients with autoimmunity were significantly increased. Antigen microarray analysis revealed a wide range of IgG/IgM autoantibodies in patients with APDS1. In patients with autoimmunity, the proportion of Tfr might be positively correlated with autoantibodies. CONCLUSIONS: The pathogenic immune phenotype of APDS1 patients included (1) deceased CD3+ T-cell and B-cell counts and increased IgG levels in patients with autoimmunity, (2) an imbalanced T helper cell subset, (3) increased proportions of autoreactive B cells, and (4) distinct autoantibody reactivities in patients with autoimmunity.


Subject(s)
Autoantibodies , Autoimmunity , Child , Humans , B-Lymphocytes , Phenotype , Syndrome , Immunoglobulin G
9.
Biochem Biophys Res Commun ; 714: 149964, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38669753

ABSTRACT

Human DDX3X, an important member of the DEAD-box family RNA helicases, plays a crucial role in RNA metabolism and is involved in cancer development, viral infection, and neurodegenerative disease. Although there have been many studies on the physiological functions of human DDX3X, issues regarding its exact targets and mechanisms of action remain unclear. In this study, we systematically characterized the biochemical activities and substrate specificity of DDX3X. The results demonstrate that DDX3X is a bidirectional RNA helicase to unwind RNA duplex and RNA-DNA hybrid driven by ATP. DDX3X also has nucleic acid annealing activity, especially for DNA. More importantly, it can function as a typical nucleic acid chaperone which destabilizes highly structured DNA and RNA in an ATP-independent manner and promotes their annealing to form a more stable structure. Further truncation mutations confirmed that the highly disordered N-tail and C-tail are critical for the biochemical activities of DDX3X. They are functionally complementary, with the N-tail being crucial. These results will shed new light on our understanding of the molecular mechanism of DDX3X in RNA metabolism and DNA repair, and have potential significance for the development of antiviral/anticancer drugs targeting DDX3X.


Subject(s)
Adenosine Triphosphate , DEAD-box RNA Helicases , Molecular Chaperones , Humans , Adenosine Triphosphate/metabolism , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , DNA/metabolism , DNA/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , RNA/metabolism , RNA/chemistry , RNA/genetics , Substrate Specificity
10.
Exp Gerontol ; 191: 112434, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636571

ABSTRACT

BACKGROUND: Observational evidence suggests that type 1 diabetes mellitus (T1DM) is associated with the risk of osteoporosis (OP). Nevertheless, it is not apparent whether these correlations indicate a causal relationship. To elucidate the causal relationship, a two-sample Mendelian randomization (MR) analysis was performed. METHODS: T1DM data was obtained from the large genome-wide association study (GWAS), in which 6683 cases and 12,173 controls from 12 European cohorts were involved. Bone mineral density (BMD) samples at four sites were extracted from the GEnetic Factors for OSteoporosis (GEFOS) consortium, including forearm (FA) (n = 8,143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). The former three samples were from mixed populations and the last one was from European. Inverse variance weighting, MR-Egger, and weighted median tests were used to test the causal relationship between T1DM and OP. A series of sensitivity analyses were then conducted to verify the robustness of the results. RESULTS: Twenty-three independent SNPs were associated with FN-BMD and LS-BMD, twenty-seven were associated with FA-BMD, and thirty-one were associated with eBMD. Inverse variance-weighted estimates indicated a causal effect of T1DM on FN-BMD (odds ratio (OR) =1.033, 95 % confidence interval (CI): 1.012-1.054, p = 0.002) and LS-BMD (OR = 1.032, 95 % CI: 1.005-1.060, p = 0.022) on OP risk. Other MR methods, including weighted median and MR-Egger, calculated consistent trends. While no significant causation was found between T1DM and the other sites (FA-BMD: OR = 1.008, 95 % CI: 0.975-1.043, p = 0.632; eBMD: OR = 0.993, 95 % CI: 0.985-1.001, p = 0.106). No significant heterogeneity (except for eBMD) or horizontal pleiotropy was found for instrumental variables, suggesting these results were reliable and robust. CONCLUSIONS: This study shows a causal relationship between T1DM and the risk of some sites of OP (FN-BMD, LS-BMD), allowing for continued research to discover the clinical and experimental mechanisms of T1DM and OP. It also contributes to the recommendation if patients with T1DM need targeted care to promote bone health and timely prevention of osteoporosis.


Subject(s)
Bone Density , Diabetes Mellitus, Type 1 , Genome-Wide Association Study , Mendelian Randomization Analysis , Osteoporosis , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/complications , Osteoporosis/genetics , Bone Density/genetics , Risk Factors , Female , Male , Femur Neck/diagnostic imaging , Genetic Predisposition to Disease , Lumbar Vertebrae , Middle Aged , Case-Control Studies , Adult , Forearm
11.
Article in English | MEDLINE | ID: mdl-38655616

ABSTRACT

Vaccines play essential roles in the fight against the COVID-19 pandemic. The development and assessment of COVID-19 vaccines have generally focused on the induction and boosting of neutralizing antibodies targeting the SARS-CoV-2 spike (S) protein. Due to rapid and continuous variation in the S protein, such vaccines need to be regularly updated to match newly emerged dominant variants. T-cell vaccines that target MHC I- or II-restricted epitopes in both structural and non-structural viral proteins have the potential to induce broadly cross-protective and long-lasting responses. In this work, the entire proteome encoded by SARS-CoV-2 (Wuhan-hu-1) is subjected to immunoinformatics-based prediction of HLA-A*02:01-restricted epitopes. The immunogenicity of the predicted epitopes is evaluated using peripheral blood mononuclear cells from convalescent Wuhan-hu-1-infected patients. Furthermore, predicted epitopes that are conserved across major SARS-CoV-2 lineages and variants are used to construct DNA vaccines expressing multi-epitope polypeptides. Most importantly, two DNA vaccine constructs induce epitope-specific CD8 + T-cell responses in a mouse model of HLA-A*02:01 restriction and protect immunized mice from challenge with Wuhan-hu-1 virus after hACE2 transduction. These data provide candidate T-cell epitopes useful for the development of T-cell vaccines against SARS-CoV-2 and demonstrate a strategy for quick T-cell vaccine candidate development applicable to other emerging pathogens.

12.
J Org Chem ; 89(9): 6117-6125, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38654588

ABSTRACT

The first paired electrolysis-enabled arylation of quinoxalin-2(1H)-ones was achieved using cyanoarenes as the arylation reagents. A variety of 3-arylquinoxalin-2(1H)-ones with various important functional groups were obtained in moderate to good yields under metal- and chemical oxidant-free conditions. With a pair of reductive and oxidative processes occurring among the substrates and reaction intermediates, the power consumption can be dramatically reduced.

13.
Opt Express ; 32(5): 7426-7447, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439423

ABSTRACT

A near-infrared single-photon lidar system, equipped with a 64×64 resolution array and a Risley prism scanner, has been engineered for daytime long-range and high-resolution 3D imaging. The system's detector, leveraging Geiger-mode InGaAs/InP avalanche photodiode technology, attains a single-photon detection efficiency of over 15% at the lidar's 1064 nm wavelength. This efficiency, in tandem with a narrow pulsed laser that boasts a single-pulse energy of 0.5 mJ, facilitates 3D imaging capabilities for distances reaching approximately 6 kilometers. The Risley scanner, composing two counter-rotating wedge prisms, is designed to perform scanning measurements across a 6-degree circular field-of-view. Precision calibration of the scanning angle and the beam's absolute direction was achieved using a precision dual-axis turntable and a collimator, culminating in 3D imaging with an exceptional scanning resolution of 28 arcseconds. Additionally, this work has developed a novel spatial domain local statistical filtering framework, specifically designed to separate daytime background noise photons from the signal photons, enhancing the system's imaging efficacy in varied lighting conditions. This paper showcases the advantages of array-based single-photon lidar image-side scanning technology in simultaneously achieving high resolution, a wide field-of-view, and extended detection range.

14.
Medicine (Baltimore) ; 103(6): e37033, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38335397

ABSTRACT

INTRODUCTION: Primary tracheal acinic cell carcinoma (ACC) is an exceptionally rare malignancy, posing challenges in understanding its clinical behavior and optimal management. Surgical resection has traditionally been the primary treatment modality, but we present a compelling case of tracheal ACC managed with endotracheal intervention, challenging conventional approaches. PATIENT CONCERNS: A 53-year-old woman presented with shortness of breath, cough, and hemoptysis. Enhanced computed tomography revealed an obstructive tracheal lesion, leading to her referral for further assessment. DIAGNOSIS: Microscopic evaluation, immunohistochemistry, and clinical assessments confirmed primary tracheal ACC, an exceedingly rare condition with limited clinical insights. INTERVENTIONS: We utilized rigid bronchoscopy to perform endotracheal intervention, successfully resecting the tumor and restoring tracheal patency. Postoperatively, the patient received no radiotherapy or chemotherapy. OUTCOMES: The patient achieved complete recovery, with 24-month follow-up examinations indicating no recurrence or metastatic disease. Only minimal scar tissue remained at the resection site. CONCLUSION: This case demonstrates the potential of endotracheal intervention as a curative approach for primary tracheal ACC, minimizing invasiveness and preserving tracheal function. Collaborative research efforts and extensive case reporting are crucial for advancing our understanding of this rare malignancy and optimizing treatment strategies for improved patient outcomes.


Subject(s)
Carcinoma, Acinar Cell , Tracheal Neoplasms , Humans , Female , Middle Aged , Tracheal Neoplasms/surgery , Tracheal Neoplasms/pathology , Carcinoma, Acinar Cell/surgery , Carcinoma, Acinar Cell/pathology , Trachea/surgery , Trachea/pathology , Bronchoscopy/methods , Tomography, X-Ray Computed
15.
Waste Manag ; 178: 155-167, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401429

ABSTRACT

Aerobic composting stands as a widely-adopted method for treating organic solid waste (OSW), simultaneously producing organic fertilizers and soil amendments. This biologically-driven biochemical reaction process, however, presents challenges due to its complex non-linear metabolism and the heterogeneous nature of the solid medium. These characteristics inherently limit the simulation accuracy and efficiency optimization in aerobic composting. Recently, significant efforts have been made to simulate and control composting process parameters, as well as predicting and optimizing composting product quality. Notably, the integration of machine learning (ML) in aerobic composting of organic waste has garnered considerable attention for its applicability and predictive capability in exploring the complex non-linear relationships of organic waste composting parameters. Despite numerous studies on ML applications in OSW composting, a systematic review of research findings in this field is lacking. This study offers a systematic overview of the application level, current status, and versatility of ML in OSW composting. It spans various aspects, such as compost maturity, environmental pollutants, nutrients, moisture, heat loss, and microbial metabolism. The survey reveals that ML-intervention predominantly focuses on compost maturity and environmental pollutants, followed by nutrients, moisture, heat loss, and microbial activity. The most commonly employed predictive models and optimization algorithms are artificial neural networks (47%) and genetic algorithms (10%). These demonstrate high prediction accuracy and maximize composting efficiency in the simulation and prediction of organic waste composting, alongside regulation of key parameters. Deep neural networks and ensemble learning models prove effective in achieving superior predictive performance by selecting feature variables in compost maturity and pollutant residue prediction of organic waste composting in a simpler and more objective manner.


Subject(s)
Composting , Environmental Pollutants , Soil , Solid Waste/analysis , Machine Learning
16.
NPJ Parkinsons Dis ; 10(1): 23, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233432

ABSTRACT

Inconsistent findings exist regarding the potential association between polluted air and Parkinson's disease (PD), with unclear insights into the role of inherited sensitivity. This study sought to explore the potential link between various air pollutants and PD risk, investigating whether genetic susceptibility modulates these associations. The population-based study involved 312,009 initially PD-free participants with complete genotyping data. Annual mean concentrations of PM2.5, PM10, NO2, and NOx were estimated, and a polygenic risk score (PRS) was computed to assess individual genetic risks for PD. Cox proportional risk models were employed to calculate hazard ratios (HR) and 95% confidence intervals (CI) for the associations between ambient air pollutants, genetic risk, and incident PD. Over a median 12.07-year follow-up, 2356 PD cases (0.76%) were observed. Compared to the lowest quartile of air pollution, the highest quartiles of NO2 and PM10 pollution showed HRs and 95% CIs of 1.247 (1.089-1.427) and 1.201 (1.052-1.373) for PD incidence, respectively. Each 10 µg/m3 increase in NO2 and PM10 yielded elevated HRs and 95% CIs for PD of 1.089 (1.026-1.155) and 1.363 (1.043-1.782), respectively. Individuals with significant genetic and PM10 exposure risks had the highest PD development risk (HR: 2.748, 95% CI: 2.145-3.520). Similarly, those with substantial genetic and NO2 exposure risks were over twice as likely to develop PD compared to minimal-risk counterparts (HR: 2.414, 95% CI: 1.912-3.048). Findings suggest that exposure to air contaminants heightens PD risk, particularly in individuals genetically predisposed to high susceptibility.

17.
Micromachines (Basel) ; 15(1)2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38276848

ABSTRACT

Convolutional neural networks (CNNs) have demonstrated significant superiority in modern artificial intelligence (AI) applications. To accelerate the inference process of CNNs, reconfigurable CNN accelerators that support diverse networks are widely employed for AI systems. Given the ubiquitous deployment of these AI systems, there is a growing concern regarding the security of CNN accelerators and the potential attacks they may face, including hardware Trojans. This paper proposes a hardware Trojan designed to attack a crucial component of FPGA-based CNN accelerators: the reconfigurable interconnection network. Specifically, the hardware Trojan alters the data paths during activation, resulting in incorrect connections in the arithmetic circuit and consequently causing erroneous convolutional computations. To address this issue, the paper introduces a novel detection technique based on physically unclonable functions (PUFs) to safeguard the reconfigurable interconnection network against hardware Trojan attacks. Experimental results demonstrate that by incorporating a mere 0.27% hardware overhead to the accelerator, the proposed hardware Trojan can degrade the inference accuracy of popular neural network architectures, including LeNet, AlexNet, and VGG, by a significant range of 8.93% to 86.20%. The implemented arbiter-PUF circuit on a Xilinx Zynq XC7Z100 platform successfully detects the presence and location of hardware Trojans in a reconfigurable interconnection network. This research highlights the vulnerability of reconfigurable CNN accelerators to hardware Trojan attacks and proposes a promising detection technique to mitigate potential security risks. The findings underscore the importance of addressing hardware security concerns in the design and deployment of AI systems utilizing FPGA-based CNN accelerators.

18.
Bioresour Technol ; 395: 130386, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38286166

ABSTRACT

Mature compost is safe and stable, yet quality assessments are challenging owing to current maturity indicators' limitations. This study employed density fractionation to separate organic carbon into light and heavy fractions, offering a new perspective for assessing maturity. Results showed that light fraction organic carbon progressively transitioned into heavy fraction during composting, reducing the proportion of total organic carbon from 82.82% to 44.03%, while heavy fraction organic carbon increased to 48.58%. During the first seven days, the reduction rate of light fraction organic carbon decreased slowly, while the increase rate of heavy fraction declined sharply, levelling off thereafter. Light/heavy fraction organic carbon ratio was significantly correlated with existing maturity indicators (carbon/nitrogen ratio, humic acid/fulvic acid ratio, biological growth-related indicators), with the ratio below 1.33 serving as a potential compost maturity marker. Thus, given its simplicity and reliability, organic carbon density fractions is an innovative indicator for compost maturity assessments.


Subject(s)
Composting , Animals , Swine , Soil , Manure , Carbon , Reproducibility of Results , Nitrogen/analysis
19.
Blood Adv ; 8(7): 1667-1682, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38286463

ABSTRACT

ABSTRACT: Congenital neutropenia (CN) is a genetic disorder characterized by persistent or intermittent low peripheral neutrophil counts, thus increasing susceptibility to bacterial and fungal infections. Various forms of CN, caused by distinct genetic mutations, exhibit differential responses to granulocyte colony-stimulating factor (G-CSF) therapy, with the underlying mechanisms not fully understood. This study presents an in-depth comparative analysis of clinical and immunological features in 5 CN patient groups (severe congenital neutropenia [SCN]1, SCN3, cyclic neutropenia [CyN], warts, hypogammaglobulinaemia, infections and myelokathexis [WHIM], and Shwachman-Bodian-Diamond Syndrome [SBDS]) associated with mutations in ELANE, HAX1, CXCR4, and SBDS genes. Our analysis led to the identification of 11 novel mutations in ELANE and 1 each in HAX1, CXCR4, and G6PC3 genes. Investigating bone marrow (BM) granulopoiesis and blood absolute neutrophil count after G-CSF treatment, we found that SCN1 and SCN3 presented with severe early-stage disruption between the promyelocyte and myelocyte, leading to a poor response to G-CSF. In contrast, CyN, affected at the late polymorphonuclear stage of neutrophil development, showed a strong G-CSF response. WHIM, displaying normal neutrophil development, responded robustly to G-CSF, whereas SBDS, with moderate disruption from the early myeloblast stage, exhibited a moderate response. Notably, SCN1 uniquely impeded neutrophil development, whereas SCN3, CyN, WHIM, and SBDS also affected eosinophils and basophils. In addition, SCN1, SCN3, and CyN presented with elevated serum immunoglobulins, increased BM plasma cells, and higher A Proliferation-Inducing Ligand levels. Our study reveals a strong correlation between the stage and severity of granulocyte development disruption and the efficacy of G-CSF therapy.


Subject(s)
Congenital Bone Marrow Failure Syndromes , Eosinophils , Granulocyte Colony-Stimulating Factor , Neutropenia/congenital , Humans , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte Colony-Stimulating Factor/therapeutic use , Mutation , Adaptor Proteins, Signal Transducing
20.
Pediatr Res ; 95(4): 1147-1152, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38001237

ABSTRACT

BACKGROUND: Sex differences in blood pressure (BP) appear during childhood and adolescence, but the role of central precocious puberty (CPP) remains unclear. In this study, we aimed to examine the association of CPP with the risk of early hypertension and BP trajectories in girls and boys. METHODS: We analyzed trajectories of BP before and after puberty in girls aged 6-13 years (n = 305) and boys aged 10-15 years (n = 153) in the Taiwan Pubertal Longitudinal Study. The timing of puberty onset was defined as the month at which the children reached Tanner stage 2. We examined the association of CPP with the risk of early hypertension and BP trajectories before and after puberty onset. RESULTS: Among boys, CPP was found to be associated with early hypertension (odds ratio, 7.45 [95% CI, 1.15-48.06]), whereas no such association was observed among girls. Boys with CPP had higher systolic BP than did those with normal puberty onset before puberty onset (mean difference, 6.51 [95% CI, 0.58-12.43]) and after puberty onset (mean difference, 8.92 [95% CI, 8.58-15.26]). CONCLUSION: A large proportion of the higher systolic BP observed in boys with CPP compared with in those with normal puberty onset is accrued after puberty. IMPACT: We examined the sex-specific association of central precocious puberty with blood pressure trajectories to better understand whether central precocious puberty was associated with early hypertension. Central precocious puberty was associated with differences in systolic blood pressure trajectories, especially after puberty onset in boys. For boys only, central precocious puberty was associated with early hypertension. A large proportion of the higher systolic blood pressure observed in boys with central precocious puberty compared with in those with normal puberty onset was accrued after puberty. Interventions targeting central precocious puberty are likely to influence systolic blood pressure in early adulthood.


Subject(s)
Hypertension , Puberty, Precocious , Child , Adolescent , Humans , Male , Female , Adult , Puberty, Precocious/complications , Blood Pressure , Longitudinal Studies , Prospective Studies , Hypertension/complications , Puberty
SELECTION OF CITATIONS
SEARCH DETAIL
...