Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Brain Res Bull ; 207: 110879, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38237873

ABSTRACT

Due to the complexity of focal epilepsy and its risk for transiting to the generalized epilepsy, the development of reliable classification methods to accurately predict and classify focal and generalized seizures is critical for the clinical management of patients with epilepsy. In order to holistically understand the seizure propagation behavior of focal epilepsy, we propose a three-node motif reduced network by respectively simplifying the focal region, surrounding healthy region and their critical regions as the single node. Because three-node motif can richly characterize information evolutions, the motif analysis method could comprehensively investigate the seizure behavior of focal epilepsy. Firstly, we define a new seizure propagation marker value to capture the seizure onsets and intensity. Based on the three-node motif analysis, it is shown that the focal seizure and spreading can be categorized as inhibitory seizure, focal seizure, focal-critical seizure and generalized seizures, respectively. The four types of seizures correspond to specific modal types respectively, reflecting the strong correlation between seizure behavior and information flow evolution. In addition, it is found that the intensity difference of outflow and inflow information from the critical node (connection heterogeneity) and the excitability of the critical node significantly affected the distribution and transition of the four seizure types. In particular, the method of local linear stability analysis also verifies the effectiveness of four types of seizures classification. In sum, this paper computationally confirms the complex dynamic behavior of focal seizures, and the study of criticality is helpful to propose novel seizure control strategies.


Subject(s)
Epilepsies, Partial , Epilepsy , Mental Disorders , Humans , Seizures/diagnosis , Seizures/etiology , Epilepsies, Partial/diagnosis , Epilepsies, Partial/complications , Epilepsy/complications , Electroencephalography
2.
Appl Math Mech ; 43(9): 1399-1414, 2022.
Article in English | MEDLINE | ID: mdl-36092985

ABSTRACT

In this paper, a reduced globus pallidus internal (GPI)-corticothalamic (GCT) model is developed, and a tri-phase delay stimulation (TPDS) with sequentially applying three pulses on the GPI representing the inputs from the striatal D 1 neurons, subthalamic nucleus (STN), and globus pallidus external (GPE), respectively, is proposed. The GPI is evidenced to control absence seizures characterized by 2 Hz-4 Hz spike and wave discharge (SWD). Hence, based on the basal ganglia-thalamocortical (BGCT) model, we firstly explore the triple effects of D l-GPI, GPE-GPI, and STN-GPI pathways on seizure patterns. Then, using the GCT model, we apply the TPDS on the GPI to potentially investigate the alternative and improved approach if these pathways to the GPI are blocked. The results show that the striatum D 1, GPE, and STN can indeed jointly and significantly affect seizure patterns. In particular, the TPDS can effectively reproduce the seizure pattern if the D 1-GPI, GPE-GPI, and STN-GPI pathways are cut off. In addition, the seizure abatement can be obtained by well tuning the TPDS stimulation parameters. This implies that the TPDS can play the surrogate role similar to the modulation of basal ganglia, which hopefully can be helpful for the development of the brain-computer interface in the clinical application of epilepsy.

SELECTION OF CITATIONS
SEARCH DETAIL