Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 539
Filter
1.
Int J Nanomedicine ; 19: 9035-9053, 2024.
Article in English | MEDLINE | ID: mdl-39253060

ABSTRACT

Background: Ischemic preconditioning-induced serum exosomes (IPC-exo) protected rat heart against myocardial ischemia/reperfusion injury. However, whether IPC-exo regulate replacement fibrosis after myocardial infarction (MI) and the underlying mechanisms remain unclear. MicroRNAs (miRs) are important cargos of exosomes and play an essential role in cardioprotection. We aim to investigate whether IPC-exo regulate post-MI replacement fibrosis by transferring cardioprotective miRs and its action mechanism. Methods: Exosomes obtained from serum of adult rats in control (Con-exo) and IPC groups were identified and analyzed, subsequently intracardially injected into MI rats following ligation. Their miRs profiles were identified using high-throughput miR sequencing to identify target miRs for bioinformatics analysis. Luciferase reporter assays confirmed target genes of selected miRs. IPC-exo transfected with selected miRs antagomir or NC were intracardially administered to MI rats post-ligation. Cardiac function and degree of replacement fibrosis were detected 4 weeks post-MI. Results: IPC-exo exerted cardioprotective effects against excessive replacement fibrosis. MiR sequencing and RT-qPCR identified miR-133a-3p as most significantly different between IPC-exo and Con-exo. MiR-133a-3p directly targeted latent transforming growth factor beta binding protein 1 (LTBP1) and protein phosphatase 2, catalytic subunit, alpha isozyme (PPP2CA). KEGG analysis showed that transforming growth factor-ß (TGF-ß) was one of the most enriched signaling pathways with miR-133a-3p. Comparing to injection of IPC-exo transfected with miR-133a-3p antagomir NC, injecting IPC-exo transfected with miR-133a-3p antagomir abolished protective effects of IPC-exo on declining excessive replacement fibrosis and cardiac function enhancement, while increasing the messenger RNA and protein expression of LTBP1, PPP2CA, and TGF-ß1in MI rats. Conclusion: IPC-exo inhibit excessive replacement fibrosis and improve cardiac function post-MI by transferring miR-133a-3p, the mechanism is associated with directly targeting LTBP1 and PPP2CA, and indirectly regulating TGF-ß pathway in rats. Our finding provides potential therapeutic effect of IPC-induced exosomal miR-133a-3p for cardiac repair.


Subject(s)
Exosomes , MicroRNAs , Myocardial Infarction , Protein Phosphatase 2 , Animals , MicroRNAs/blood , MicroRNAs/genetics , Myocardial Infarction/blood , Myocardial Infarction/therapy , Myocardial Infarction/genetics , Exosomes/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Male , Rats , Rats, Sprague-Dawley , Fibrosis , Myocardial Reperfusion Injury/blood , Myocardial Reperfusion Injury/therapy , Myocardium/metabolism , Ischemic Preconditioning/methods , Ischemic Preconditioning, Myocardial/methods
2.
Diabetes Metab J ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39301664

ABSTRACT

Background: The genetic basis for hyperglycaemia in pregnancy remain unclear. This study aimed to uncover the genetic determinants of gestational diabetes mellitus (GDM) and investigate their applications. Methods: We performed a meta-analysis of genome-wide association studies (GWAS) for GDM in Chinese women (464 cases and 1,217 controls), followed by de novo replications in an independent Chinese cohort (564 cases and 572 controls) and in silico replication in European (12,332 cases and 131,109 controls) and multi-ethnic populations (5,485 cases and 347,856 controls). A polygenic risk score (PRS) was derived based on the identified variants. Results: Using the genome-wide scan and candidate gene approaches, we identified four susceptibility loci for GDM. These included three previously reported loci for GDM and type 2 diabetes mellitus (T2DM) at MTNR1B (rs7945617, odds ratio [OR], 1.64; 95% confidence interval [CI],1.38 to 1.96]), CDKAL1 (rs7754840, OR, 1.33; 95% CI, 1.13 to 1.58), and INS-IGF2-KCNQ1 (rs2237897, OR, 1.48; 95% CI, 1.23 to 1.79), as well as a novel genome-wide significant locus near TBR1-SLC4A10 (rs117781972, OR, 2.05; 95% CI, 1.61 to 2.62; Pmeta=7.6×10-9), which has not been previously reported in GWAS for T2DM or glycaemic traits. Moreover, we found that women with a high PRS (top quintile) had over threefold (95% CI, 2.30 to 4.09; Pmeta=3.1×10-14) and 71% (95% CI, 1.08 to 2.71; P=0.0220) higher risk for GDM and abnormal glucose tolerance post-pregnancy, respectively, compared to other individuals. Conclusion: Our results indicate that the genetic architecture of glucose metabolism exhibits both similarities and differences between the pregnant and non-pregnant states. Integrating genetic information can facilitate identification of pregnant women at a higher risk of developing GDM or later diabetes.

3.
Int J Biol Macromol ; 278(Pt 2): 134604, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39137853

ABSTRACT

The development of self-powered sensors with interference-resistant detection is a priority area of research for the next generation of wearable electronic devices. Nevertheless, the presence of multiple stimuli in the actual environment will result in crosstalk with the sensor, thereby hindering the ability to obtain an accurate response to a singular stimulus. Here, we present a self-powered sensor composed of silk-based conductive composite fibers (CNFA@ESF), which is capable of energy storage and sensing. The fabricated CNFA@ESF exhibits excellent mechanical performance, as well as flexibility that can withstand various deformations. The CNFA@ESF provides a good areal capacitance (44.44 mF cm-2), high-rate capability, and excellent cycle stability (91 % for 5000 cycles). In addition, CNFA@ESF also shows good sensing performance for multiple signals including strain, temperature, and humidity. It was observed that the assembly of the symmetrical device with a stiff hydrogel surface layer for protection enabled the real-time, interference-free monitoring of temperature signals. Also, the CNFA@ESF can be woven into fabrics and integrated with a solar cell to form a self-powered sensor system, which has been proven to convert and store solar energy to power electronic watches, indicating its huge potential for future wearable electronics.


Subject(s)
Electric Capacitance , Silk , Temperature , Wearable Electronic Devices , Silk/chemistry , Biosensing Techniques/methods
4.
Insect Biochem Mol Biol ; 173: 104175, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39134228

ABSTRACT

Carboxypeptidase A has been found across various animal species, yet its activation mechanism during the insect molting process remains elusive. Our study specifically delved into the activation mechanism of carboxypeptidase A (Bm-CPA), identified in Bombyx mori's molting fluid during metamorphosis. Initially, western blotting identified two forms of Bm-CPA, 65 kDa and 54 kDa, in the epidermis of silkworms during the molting stage. Expressing the complete Bm-CPA sequence in Pichia pastoris allowed the identification, via mass spectrometry analysis, of a 75-amino-acid propeptide for the initial hydrolysis process. Subsequently, a 35 kDa form of Bm-CPA emerged in the molting fluid, confirmed as the active form through in vitro assays, demonstrating potent carboxypeptidase A activity and faint carboxypeptidase B activity. Four potential activation sites (including Lys158/Arg159 and Arg177/Arg178) were identified through mass spectrometry and amino acid mutation analysis. RNAi of Bm-CPA indicates its critical role in molting. Finally, the carboxypeptidase inhibitor (Bm-CPI) from silkworm molting fluid was expressed to explore its role in regulating Bm-CPA activity, demonstrating a direct interaction with the 35 kDa Bm-CPA. Our research implies Bm-CPA's potential involvement in the silkworm molting process, suggesting diverse regulatory roles. These findings highlight intricate protein regulation patterns during insect metamorphosis and development.


Subject(s)
Bombyx , Insect Proteins , Molting , Animals , Bombyx/genetics , Bombyx/metabolism , Bombyx/growth & development , Insect Proteins/metabolism , Insect Proteins/genetics , Larva/growth & development , Larva/metabolism , Larva/genetics , Metamorphosis, Biological , Amino Acid Sequence
5.
Int J Biol Macromol ; 278(Pt 2): 134618, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151851

ABSTRACT

Biomass-based slow-release fertilizers (SRFs) are a sustainable solution for addressing food scarcity, improving fertilizer efficiency, and reducing pollution, whereas they still face complex preparation, high costs, and low release characteristics. This study introduces a simple and innovative approach to producing bifunctional green SRFs with controlled release and conditioning properties for saline soils and harsh environments. The method involves a one-pot preparation of microsphere-structured amine-modified lignin slow-release fertilizer (L-UX) using biomass lignin as the starting material. The L-UX demonstrates an exceptional fertilizer loading rate (66.2 %) and extended slow-release performance (288 h), effectively enhancing the fertilizer's release ability. Compared to traditional fertilizers, the bifunctional L-UX significantly improves soil water retention capacity (824.3 %), plant growth, and germination percentage in challenging soil conditions (133 %). These findings highlight the potential of L-UX as a large-scale controlled-release fertilizer in harsh environments. A life cycle assessment (LCA) was also conducted to evaluate the environmental impact of L-UX from its production to disposal. This revealed that L-UX has a minimal environmental footprint compared to conventional inorganic fertilizers. This study further supports the widespread application of L-UX as an environmentally friendly alternative.


Subject(s)
Amines , Fertilizers , Lignin , Soil , Lignin/chemistry , Amines/chemistry , Soil/chemistry , Delayed-Action Preparations , Biomass , Water/chemistry
6.
Int J Biol Macromol ; 279(Pt 1): 135090, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39191342

ABSTRACT

Visual pH-responsive packaging material is particularly important in food supply chain safety monitoring due to their non-destructive monitoring method and intuitive result. However, it has always been limited by the instability performance of pH-response components and carriers, which further hinders its wide food safety application. To address these challenges, we selected cellulose with remarkable biocompatibility and mechanical properties as the carrier, and high pH-responsive curcumin to develop a smart packaging material (RC/GC composite film) with real-time food safety monitoring. Compared with pure cellulose film, the RC/GC composite film exhibited excellent mechanical properties (4-fold enhancement) and thermal stability (100 °C increasing). Meanwhile, based on the first reported strategy of curcumin in-situ growth during cellulose film formation, the RC/GC composite film exhibited exceptional antioxidant activity (89.2 %), antimicrobial property (91.6 %), and significant pH-responsive sensitivity (within 15 s). This innovative approach offers a new strategy for easy-to-use and effective monitoring of food spoilage in packaging materials.

7.
Carbohydr Polym ; 342: 122395, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048232

ABSTRACT

Discharging wastewater from industrial dyeing and printing processes poses a significant environmental threat, necessitating green and efficient adsorbents. Cellulose nanocrystals (CNCs) have emerged as a promising option for dye adsorbing. However, the industrial production and commercialization of CNCs still faced low yield, time-consuming, and uneco-friendly. In this study, we proposed a facile hydrochloric/maleic acid (HCl/C4H4O4) hydrolysis method to synthesize carboxylated CNCs using Box-Behnken design and dual response surface design, which can systematically investigate the effect of experimental factors (temperature, time and HCl/C4H4O volume ratio) on the final products. The rod-liked carboxylated CNCs gave the highest yield of 90.50 %, maximum carboxyl content of 1.29 mmol/g, and efficient dye removal ratio of 91.5 %. Furthermore, compared to CNCs obtained by commonly sulfuric acid hydrolysis way (CNCs-S) with a Tmax of 242.6 °C, the CNCs extracted at 5 h exhibited significantly improved thermal stability with Tmax reaching 351.2 °C. The enriched carboxyl content and excellent thermal stability show potential wastewater treatment applications under harsh conditions.

8.
Int J Biol Macromol ; 276(Pt 1): 133799, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39019367

ABSTRACT

The performance of cellulose-based materials is highly dependent on the choice of solvent systems. Exceptionally, cellulose dissolution and derivatization by efficient solvent have been considered as a key factor for large-scale industrial applications of cellulose. However, cellulose dissolution and derivatization often requires harsh reaction conditions, high energy consumption, and complex solubilizing, resulting in environmental impacts and low practical value. Here we address these limitations by using a low-temperature oxalic acid/sulfuric acid solvent to enable cellulose dissolution and derivatization for high-performance cellulose films. The dissolution and derivatization mechanism of the mixed acid is studied, demonstrating that cellulose is firstly socked by oxalic acid, then more hydrogen bonds ionized by sulfuric acid break cellulose chain, and finally the esterification reaction between oxalic acid and cellulose is catalyzed by sulfuric acid. Solutions containing 8 %-10 % cellulose are obtained and can be stored for a long time at -18 °C without significant degradation. Moreover, the cellulose film exhibits a higher tensile strength of up to 66.1 MPa, thermal stability, and degree of polymerization compared to that fabricated by sulfuric acid. These unique advantages provide new paths to utilize renewable resources for alternative food packaging materials at an industrial scale.


Subject(s)
Cellulose , Food Packaging , Oxalic Acid , Sulfuric Acids , Sulfuric Acids/chemistry , Cellulose/chemistry , Food Packaging/methods , Oxalic Acid/chemistry , Tensile Strength , Solubility , Solvents/chemistry
9.
World J Psychiatry ; 14(7): 1106-1117, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39050198

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) in adolescents and young adults contributes significantly to global morbidity, with inconsistent findings on brain structural changes from structural magnetic resonance imaging studies. Activation likelihood estimation (ALE) offers a method to synthesize these diverse findings and identify consistent brain anomalies. AIM: To identify consistent brain structural changes in adolescents and young adults with MDD using ALE meta-analysis. METHODS: We performed a comprehensive literature search in PubMed, Web of Science, Embase, and Chinese National Knowledge Infrastructure databases for neuroimaging studies on MDD among adolescents and young adults published up to November 19, 2023. Two independent researchers performed the study selection, quality assessment, and data extraction. The ALE technique was employed to synthesize findings on localized brain function anomalies in MDD patients, which was supplemented by sensitivity analyses. RESULTS: Twenty-two studies comprising fourteen diffusion tensor imaging (DTI) studies and eight voxel-based morphometry (VBM) studies, and involving 451 MDD patients and 465 healthy controls (HCs) for DTI and 664 MDD patients and 946 HCs for VBM, were included. DTI-based ALE demonstrated significant reductions in fractional anisotropy (FA) values in the right caudate head, right insula, and right lentiform nucleus putamen in adolescents and young adults with MDD compared to HCs, with no regions exhibiting increased FA values. VBM-based ALE did not demonstrate significant alterations in gray matter volume. Sensitivity analyses highlighted consistent findings in the right caudate head (11 of 14 analyses), right insula (10 of 14 analyses), and right lentiform nucleus putamen (11 of 14 analyses). CONCLUSION: Structural alterations in the right caudate head, right insula, and right lentiform nucleus putamen in young MDD patients may contribute to its recurrent nature, offering insights for targeted therapies.

10.
Nano Lett ; 24(26): 7953-7961, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888317

ABSTRACT

The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with "adaptive" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5ß1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a "dynamic to static" transformation of ligands, we sequentially activated α5ß1 and αvß3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of "sequentially" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.


Subject(s)
Cell Adhesion , Cell Differentiation , Mechanotransduction, Cellular , Mesenchymal Stem Cells , Surface Properties , Mesenchymal Stem Cells/cytology , Humans , Integrin alpha5beta1/metabolism , Osteogenesis , Extracellular Matrix/chemistry , Extracellular Matrix/metabolism , Integrin alphaVbeta3/metabolism , Ligands , Focal Adhesions
11.
Nature ; 630(8018): 943-949, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38898271

ABSTRACT

Spatial transcriptomics measures in situ gene expression at millions of locations within a tissue1, hitherto with some trade-off between transcriptome depth, spatial resolution and sample size2. Although integration of image-based segmentation has enabled impactful work in this context, it is limited by imaging quality and tissue heterogeneity. By contrast, recent array-based technologies offer the ability to measure the entire transcriptome at subcellular resolution across large samples3-6. Presently, there exist no approaches for cell type identification that directly leverage this information to annotate individual cells. Here we propose a multiscale approach to automatically classify cell types at this subcellular level, using both transcriptomic information and spatial context. We showcase this on both targeted and whole-transcriptome spatial platforms, improving cell classification and morphology for human kidney tissue and pinpointing individual sparsely distributed renal mouse immune cells without reliance on image data. By integrating these predictions into a topological pipeline based on multiparameter persistent homology7-9, we identify cell spatial relationships characteristic of a mouse model of lupus nephritis, which we validate experimentally by immunofluorescence. The proposed framework readily generalizes to new platforms, providing a comprehensive pipeline bridging different levels of biological organization from genes through to tissues.


Subject(s)
Cells , Gene Expression Profiling , Intracellular Space , Kidney , Transcriptome , Animals , Female , Humans , Mice , Cells/classification , Cells/metabolism , Disease Models, Animal , Fluorescent Antibody Technique , Gene Expression Profiling/methods , Kidney/cytology , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Lupus Nephritis/genetics , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Reproducibility of Results , Intracellular Space/genetics , Intracellular Space/metabolism
12.
Nat Genet ; 56(7): 1468-1481, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839885

ABSTRACT

Aneuploidy is frequently detected in early human embryos as a major cause of early pregnancy failure. However, how aneuploidy affects cellular function remains elusive. Here, we profiled the transcriptomes of 14,908 single cells from 203 human euploid and aneuploid blastocysts involving autosomal and sex chromosomes. Nearly all of the blastocysts contained four lineages. In aneuploid chromosomes, 19.5% ± 1.2% of the expressed genes showed a dosage effect, and 90 dosage-sensitive domains were identified. Aneuploidy leads to prevalent genome-wide transcriptome alterations. Common effects, including apoptosis, were identified, especially in monosomies, partially explaining the lower cell numbers in autosomal monosomies. We further identified lineage-specific effects causing unstable epiblast development in aneuploidies, which was accompanied by the downregulation of TGF-ß and FGF signaling, which resulted in insufficient trophectoderm maturation. Our work provides crucial insights into the molecular basis of human aneuploid blastocysts and may shed light on the cellular interaction during blastocyst development.


Subject(s)
Aneuploidy , Blastocyst , Single-Cell Analysis , Transcriptome , Humans , Blastocyst/metabolism , Blastocyst/cytology , Single-Cell Analysis/methods , Female , Gene Expression Regulation, Developmental , Embryonic Development/genetics , Gene Expression Profiling/methods , Pregnancy , Signal Transduction/genetics , Apoptosis/genetics , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Cell Lineage/genetics
13.
J Environ Manage ; 361: 121268, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820787

ABSTRACT

Carbon dioxide (CO2) production and emissions from inland waters play considerable roles in global atmospheric CO2 sources, while there are still uncertainties regarding notable nutrient inputs and anthropogenic activities. Urban inland waters, with frequently anthropogenic modifications and severely nitrogen loadings, were hotspots for CO2 emissions. Here, we investigated the spatiotemporal patterns of partial pressure of CO2 (pCO2) and CO2 fluxes (FCO2) in typical urban inland waters in Tianjin, China. Our observation indicated that pCO2 values were oversaturated in highly polluted waters, particularly in sewage rivers and urban rivers, exhibiting approximately 9 times higher than the atmosphere equilibrium concentration during sampling campaigns. Obviously, the spatiotemporal distributions of pCO2 and FCO2 emphasized that the water environmental conditions and anthropogenic activities jointly adjusted primary productivity and biological respiration of inland waters. Meanwhile, statistically positive correlations between pCO2/FCO2 and NH4+-N/NO3--N (p < 0.05) suggested that nitrogen biogeochemical processes, especially the nitrification, played a dominant role in CO2 emissions attributing to the water acidification that stimulated CO2 production and emissions. Except for slight CO2 sinks in waters with low organic contents, the total CO2 emissions from the urban surface waters of Tianjin were remarkable (286.8 Gg yr-1). The results emphasized that the reductions of nitrogen loadings, sewage draining waters, and agricultural pollution could alleviate CO2 emissions from urban inland waters.


Subject(s)
Carbon Dioxide , Nitrogen , Carbon Dioxide/analysis , Nitrogen/analysis , Environmental Monitoring , China , Rivers/chemistry
14.
J Cancer Res Ther ; 20(2): 615-624, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38687932

ABSTRACT

AIM: The accurate reconstruction of cone-beam computed tomography (CBCT) from sparse projections is one of the most important areas for study. The compressed sensing theory has been widely employed in the sparse reconstruction of CBCT. However, the total variation (TV) approach solely uses information from the i-coordinate, j-coordinate, and k-coordinate gradients to reconstruct the CBCT image. MATERIALS AND METHODS: It is well recognized that the CBCT image can be reconstructed more accurately with more gradient information from different directions. Thus, this study introduces a novel approach, named the new multi-gradient direction total variation minimization method. The method uses gradient information from the ij-coordinate, ik-coordinate, and jk-coordinate directions to reconstruct CBCT images, which incorporates nine different types of gradient information from nine directions. RESULTS: This study assessed the efficacy of the proposed methodology using under-sampled projections from four different experiments, including two digital phantoms, one patient's head dataset, and one physical phantom dataset. The results indicated that the proposed method achieved the lowest RMSE index and the highest SSIM index. Meanwhile, we compared the voxel intensity curves of the reconstructed images to assess the edge structure preservation. Among the various methods compared, the curves generated by the proposed method exhibited the highest level of consistency with the gold standard image curves. CONCLUSION: In summary, the proposed method showed significant potential in enhancing the quality and accuracy of CBCT image reconstruction.


Subject(s)
Algorithms , Cone-Beam Computed Tomography , Image Processing, Computer-Assisted , Phantoms, Imaging , Humans , Cone-Beam Computed Tomography/methods , Image Processing, Computer-Assisted/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Head/diagnostic imaging
15.
Materials (Basel) ; 17(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612098

ABSTRACT

The flow behaviour of AA2060 Al alloy under warm/hot deformation conditions is complicated because of its dependency on strain rates (ε˙), strain (ε), and deformation modes. Thus, it is crucial to reveal and predict the flow behaviours of this alloy at a wide range of temperatures (T) and ε˙ using different constitutive models. Firstly, the isothermal tensile tests were carried out via a Gleeble-3800 thermomechanical simulator at a T range of 100, 200, 300, 400, and 500 °C and ε˙ range of 0.01, 0.1, 1, and 10 s-1 to reveal the warm/hot flow behaviours of AA2060 alloy sheet. Consequently, three phenomenological-based constitutive models (L-MJC, S1-MJC, S2-MJC) and a modified Zerilli-Armstrong (MZA) model representing physically based constitutive models were developed to precisely predict the flow behaviour of AA2060 alloy sheet under a wide range of T and ε˙. The predictability of the developed constitutive models was assessed and compared using various statistical parameters, including the correlation coefficient (R), average absolute relative error (AARE), and root mean square error (RMSE). By comparing the results determined from these models and those obtained from experimentations, and confirmed by R, AARE, and RMSE values, it is concluded that the predicted stresses determined from the S2-MJC model align closely with the experimental stresses, demonstrating a remarkable fit compared to the S1-MJC, L-MJC, and MZA models. This is because of the linking impact between softening, the strain rate, and strain hardening in the S2-MJC model. It is widely known that the dislocation process is affected by softening and strain rates. This is attributed to the interactions that occurred between ε and ε˙ from one side and between ε, ε˙, and T from the other side using an extensive set of constants correlating the constitutive components of dynamic recovery and softening mechanisms.

16.
World J Psychiatry ; 14(3): 456-466, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38617984

ABSTRACT

BACKGROUND: Adolescent major depressive disorder (MDD) is a significant mental health concern that often leads to recurrent depression in adulthood. Resting-state functional magnetic resonance imaging (rs-fMRI) offers unique insights into the neural mechanisms underlying this condition. However, despite previous research, the specific vulnerable brain regions affected in adolescent MDD patients have not been fully elucidated. AIM: To identify consistent vulnerable brain regions in adolescent MDD patients using rs-fMRI and activation likelihood estimation (ALE) meta-analysis. METHODS: We performed a comprehensive literature search through July 12, 2023, for studies investigating brain functional changes in adolescent MDD patients. We utilized regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) analyses. We compared the regions of aberrant spontaneous neural activity in adolescents with MDD vs healthy controls (HCs) using ALE. RESULTS: Ten studies (369 adolescent MDD patients and 313 HCs) were included. Combining the ReHo and ALFF/fALFF data, the results revealed that the activity in the right cuneus and left precuneus was lower in the adolescent MDD patients than in the HCs (voxel size: 648 mm3, P < 0.05), and no brain region exhibited increased activity. Based on the ALFF data, we found decreased activity in the right cuneus and left precuneus in adolescent MDD patients (voxel size: 736 mm3, P < 0.05), with no regions exhibiting increased activity. CONCLUSION: Through ALE meta-analysis, we consistently identified the right cuneus and left precuneus as vulnerable brain regions in adolescent MDD patients, increasing our understanding of the neuropathology of affected adolescents.

17.
Diabetes ; 73(6): 953-963, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38506952

ABSTRACT

Normal-weight individuals with usual-onset type 2 diabetes have reduced ß-cell function and greater insulin sensitivity compared with their obese counterparts. The relative contribution of ß-cell dysfunction and insulin resistance to young-onset type 2 diabetes (YOD) among normal-weight individuals is not well established. In 44 individuals with YOD (24 with normal weight and 20 with obesity) and 24 healthy control individuals with normoglycemia (12 with normal weight and 12 with obesity), we conducted 2-h 12 mmol/L hyperglycemic clamps to measure acute (0-10 min) and steady-state (100-120 min) insulin and C-peptide responses, as well as insulin sensitivity index. Normal-weight individuals with YOD had lower acute insulin response, steady-state insulin and C-peptide responses, and a higher insulin sensitivity index compared with their obese counterparts with YOD. Compared with BMI-matched healthy control individuals, normal-weight individuals with YOD had lower acute and steady-state insulin and C-peptide responses but a similar insulin sensitivity index. The impairment of steady-state ß-cell response relative to healthy control individuals was more pronounced in normal-weight versus obese individuals with YOD. In conclusion, normal-weight Chinese with YOD exhibited worse ß-cell function but preserved insulin sensitivity relative to obese individuals with YOD and BMI-matched healthy individuals with normoglycemia. The selection of glucose-lowering therapy should account for pathophysiological differences underlying YOD between normal-weight and obese individuals.


Subject(s)
C-Peptide , Diabetes Mellitus, Type 2 , Insulin Resistance , Insulin-Secreting Cells , Insulin , Obesity , Adult , Female , Humans , Male , Young Adult , Age of Onset , Asian People , Blood Glucose/metabolism , Body Mass Index , C-Peptide/blood , C-Peptide/metabolism , Case-Control Studies , China/epidemiology , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , East Asian People , Glucose Clamp Technique , Insulin/metabolism , Insulin/blood , Insulin Resistance/physiology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/physiology , Obesity/metabolism , Obesity/physiopathology
18.
ACS Nano ; 18(12): 8754-8767, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38456442

ABSTRACT

Concepts of sustainability must be developed to overcome the increasing environmental hazards caused by fossil resources. Cellulose derivatives with excellent properties are promising biobased alternatives for petroleum-derived materials. However, a one-pot route to achieve cellulose dissolution and derivatization is very challenging, requiring harsh conditions, high energy consumption, and complex solubilizing. Herein, we design a one-pot tailoring hydronium ion driven dissociation-chemical cross-linking strategy to achieve superfast cellulose dissolution and derivatization for orderly robust cellulose films. In this strategy, there is a powerful driving force from organic acid with a pKa below 3.75 to dissociate H+ and trigger the dissolution and derivatization of cellulose under the addition of H2SO4. Nevertheless, the driving force can only trigger a partial swelling of cellulose but without dissolution when the pKa of organic acid is above 4.26 for the dissociation of H+ is inhibited by the addition of inorganic acid. The cellulose film has high transmittance (up to ∼90%), excellent tensile strength (∼122 MPa), and is superior to commercial PE film. Moreover, the tensile strength is increased by 400% compared to cellulose film prepared by the ZnCl2 solvent. This work provides an efficient solvent, which is of great significance for emerging cellulose materials from renewable materials.

19.
World J Psychiatry ; 14(2): 315-329, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464778

ABSTRACT

BACKGROUND: Sleep deprivation is a prevalent issue that impacts cognitive function. Although numerous neuroimaging studies have explored the neural correlates of sleep loss, inconsistencies persist in the reported results, necessitating an investigation into the consistent brain functional changes resulting from sleep loss. AIM: To establish the consistency of brain functional alterations associated with sleep deprivation through systematic searches of neuroimaging databases. Two meta-analytic methods, signed differential mapping (SDM) and activation likelihood estimation (ALE), were employed to analyze functional magnetic resonance imaging (fMRI) data. METHODS: A systematic search performed according to PRISMA guidelines was conducted across multiple databases through July 29, 2023. Studies that met specific inclu-sion criteria, focused on healthy subjects with acute sleep deprivation and reported whole-brain functional data in English were considered. A total of 21 studies were selected for SDM and ALE meta-analyses. RESULTS: Twenty-one studies, including 23 experiments and 498 subjects, were included. Compared to pre-sleep deprivation, post-sleep deprivation brain function was associated with increased gray matter in the right corpus callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule. SDM revealed increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in the right cerebellar gyrus, left middle frontal gyrus, corpus callosum, and right cuneus. CONCLUSION: This meta-analysis consistently identified brain regions affected by sleep deprivation, notably the left medial frontal gyrus and corpus callosum, shedding light on the neuropathology of sleep deprivation and offering insights into its neurological impact.

20.
RMD Open ; 10(1)2024 03 22.
Article in English | MEDLINE | ID: mdl-38519110

ABSTRACT

BACKGROUND: This study aims to establish a reliable prediction model of progressive fibrosing interstitial lung disease (PF-ILD) in patients with systemic sclerosis (SSc)-ILD, to achieve early risk stratification and to help better in preventing disease progression. METHODS: 304 SSc-ILD patients with no less than three pulmonary function tests within 6-24 months were included. We collected data at baseline and compared differences between SSc patients with and without PF-ILD. Least absolute shrinkage and selection operator regularisation regression and multivariable Cox regression were used to construct the prediction model, which were presented as nomogram and forest plot. RESULTS: Among the 304 patients with SSc-ILD included, 92.1% were women, with a baseline average age of 46.7 years. Based on the 28 variables preselected by comparison between SSc patients without PF-ILD group (n=150) and patients with SSc PF-ILD group (n=154), a 9-variable prediction model was constructed, including age≥50 years (HR 1.8221, p=0.001), hyperlipidemia (HR 4.0516, p<0.001), smoking history (HR 3.8130, p<0.001), diffused cutaneous SSc subtype (HR 1.9753, p<0.001), arthritis (HR 2.0008, p<0.001), shortness of breath (HR 2.0487, p=0.012), decreased serum immunoglobulin A level (HR 2.3900, p=0.002), positive anti-Scl-70 antibody (HR 1.9573, p=0.016) and usage of cyclophosphamide/mycophenolate mofetil (HR 0.4267, p<0.001). The concordance index after enhanced bootstrap resampling adjustment was 0.874, while the optimism-corrected Brier Score was 0.144 in internal validation. CONCLUSION: This study developed the first prediction model for PF-ILD in patients with SSc-ILD, and internal validation showed favourable accuracy and stability of the model.


Subject(s)
Lung Diseases, Interstitial , Scleroderma, Systemic , Humans , Female , Middle Aged , Male , Cohort Studies , Lung Diseases, Interstitial/diagnosis , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/etiology , Cyclophosphamide , Disease Progression , Scleroderma, Systemic/complications
SELECTION OF CITATIONS
SEARCH DETAIL