Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3299, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632245

ABSTRACT

Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe2O4 (NFO)@BiFeO3 (BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RLmin) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.

2.
Opt Lett ; 49(8): 2053-2056, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621074

ABSTRACT

Plasmonic nanosensors and the dynamic control of light fields are of the utmost significance in the field of micro- and nano-optics. Here, our study successfully demonstrates a plasmonic nanosensor in a compact coupled resonator system and obtains the pressure-induced transparency phenomenon for the first time to our knowledge. The proposed structure consists of a groove and slot cavity coupled in the metal-insulator-metal waveguide, whose mechanical and optical characteristics are investigated in detail using the finite element method. Simulation results show that we construct a quantitative relationship among the resonator deformation quantity, the applied pressure variation, and the resonant wavelength offset by combining the mechanical and optical properties of the proposed system. The physical features contribute to highly efficient plasmonic nanosensors for refractive index and optical pressure sensing with sensitivity of 1800 nm/RIU and 7.4 nm/MPa, respectively. Furthermore, the light waves are coupled to each other in the resonators, which are detuned due to the presence of pressure, resulting in the pressure-induced transparency phenomenon. It is noteworthy to emphasize that, unlike previously published works, our numerical results take structural deformation-induced changes in optical properties into account, making them trustworthy and practical. The proposed structure introduces a novel, to the best of our knowledge, approach for the dynamic control of light fields and has special properties that can be utilized for the realization of various integrated components.

SELECTION OF CITATIONS
SEARCH DETAIL