Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 428
Filter
1.
Arch Bronconeumol ; 2024 Jun 21.
Article in English, Spanish | MEDLINE | ID: mdl-38987113

ABSTRACT

INTRODUCTION: The English PUMA questionnaire emerges as an effective COPD case-finding tool. We aimed to use the PUMA questionnaire in combination with peak expiratory flow rate (PEFR) to improve case-finding efficacy in Chinese population. METHODS: This cross-sectional, observational study included two stages: translating English to Chinese PUMA (C-PUMA) questionnaire with linguistic validation and psychometric evaluation, followed by clinical validation. Eligible participants (with age ≥40 years, respiratory symptoms, smoking history ≥10 pack-years) were enrolled and subjected to three questionnaires (C-PUMA, COPD assessment test [CAT], and generic health survey [SF-12V2]), PEFR measurement, and confirmatory spirometry. The C-PUMA score and PEFR were incorporated into a PUMA-PEFR prediction model applying binary logistic regression coefficients to estimate the probability of COPD (PCOPD). RESULTS: C-PUMA was finalized through standard forward-backward translation processes and confirmation of good readability, comprehensibility, and reliability. In clinical validation, 240 participants completed the study. 78/240 (32.5%) were diagnosed with COPD. C-PUMA exhibited significant validity (correlated with CAT or physical component scores of SF-12V2, both P<0.05, respectively). PUMA-PEFR model had higher diagnostic accuracy than C-PUMA alone (area under ROC curve, 0.893 vs. 0.749, P<0.05). The best cutoff values of C-PUMA and PUMA-PEFR model (PCOPD) were ≥6 and ≥0.39, accounting for a sensitivity/specificity/numbers needed to screen of 77%/64%/3 and 79%/88%/2, respectively. C-PUMA ≥5 detected more underdiagnosed patients, up to 11.5% (vs. C-PUMA ≥6). CONCLUSION: C-PUMA is well-validated. The PUMA-PEFR model provides more accurate and cost-effective case-finding efficacy than C-PUMA alone in at-risk, undiagnosed COPD patients. These tools can be useful to detect COPD early.

2.
Patterns (N Y) ; 5(6): 101010, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-39005486

ABSTRACT

The authors emphasize diversity, equity, and inclusion in STEM education and artificial intelligence (AI) research, focusing on LGBTQ+ representation. They discuss the challenges faced by queer scientists, educational resources, the implementation of National AI Campus, and the notion of intersectionality. The authors hope to ensure supportive and respectful engagement across all communities.

3.
EFORT Open Rev ; 9(7): 668-675, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949167

ABSTRACT

Purpose: The combination of pharmacological and non-pharmacological interventions is strongly recommended by current guidelines for knee osteoarthritis. However, few systematic reviews have validated their combined efficacy. In this study, we investigated the effects of the combination of pharmacological agents and exercise on knee osteoarthritis. Methods: Randomized controlled trials that investigated the efficacy of pharmacological agents combined with exercise for knee osteoarthritis were searched in PubMed, Embase, and Cochrane Library up to February 2024. The network meta-analysis was performed within the frequentist framework. Standardized mean difference (SMD) with 95% CI was estimated for pain and function. Grading of recommendations, assessment, development, and evaluations were used to evaluate the certainty of evidence. Results: In total, 71 studies were included. The combination therapy outperformed pharmacological or exercise therapy alone. Among the various pharmacological agents combined with exercise, mesenchymal stem cell injection was ranked the best for short-term pain reduction (SMD: -1.53, 95% CI: -1.92 to -1.13, high certainty), followed by botulinum toxin A, dextrose, and platelet-rich plasma. For long-term pain relief, dextrose prolotherapy was the optimal (SMD: -1.76, 95% CI: -2.65 to -0.88, moderate certainty), followed by mesenchymal stem cells, platelet rich in growth factor, and platelet-rich plasma. Conclusion: Exercise programs should be incorporated into clinical practice and trial design. For patients undergoing exercise therapies, mesenchymal stem cell, dextrose, platelet-rich plasma, platelet rich in growth factor, and botulinum toxin A may be the optimal agents.

4.
Hematol Rep ; 16(2): 347-353, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38921183

ABSTRACT

Background/Objectives: Relapsed B-cell acute lymphoblastic leukemia (B-ALL) remains an unresolved matter of concern regarding adverse outcomes. This case study aimed to evaluate the effectiveness of blinatumomab, with or without door lymphocyte infusion (DLI), in treating measurable residual disease (MRD)-positive B-ALL. Methods: All patients who received blinatumomab salvage therapy were included in this study. Eleven patients were included in the study. All patients were evaluated for MRD-negativity. Results: Before starting blinatumomab therapy, seven patients tested positive for MRD, three tested negative, and one had refractory disease. Hematopoietic cell transplantation (HCT) was reserved for five patients with persistent MRD. Six patients became MRD-negative and subsequent HCT was not performed. Only two patients relapsed; one patient died of relapse, and the other one received carfilzomib-based therapy and was MRD-negative thereafter. Nine patients were MRD-negative at a median follow-up of 28 months (15-52 months). Two of three MRD-positive post-transplant patients remained in complete molecular remission after preemptive DLI at the last follow-up date. In the first salvage, blinatumomab may achieve complete remission and bridging to HCT in pediatric patients with end-of-induction MRD-positive B-cell precursor ALL. Conclusions: The decision on how to treat post-transplant relapse continues to affect survival outcomes. Blinatumomab combined with DLI may extend the armamentarium of release options for high-risk pediatric patients. This approach is encouraging for high-risk ALL patients who are MRD-positive post-transplantation.

5.
Commun Biol ; 7(1): 763, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914653

ABSTRACT

Chromatin organization and dynamics play important roles in governing the regulation of nuclear processes of biological cells. However, due to the constant diffusive motion of chromatin, examining chromatin nanostructures in living cells has been challenging. In this study, we introduce interferometric scattering correlation spectroscopy (iSCORS) to spatially map nanoscopic chromatin configurations within unlabeled live cell nuclei. This label-free technique captures time-varying linear scattering signals generated by the motion of native chromatin on a millisecond timescale, allowing us to deduce chromatin condensation states. Using iSCORS imaging, we quantitatively examine chromatin dynamics over extended periods, revealing spontaneous fluctuations in chromatin condensation and heterogeneous compaction levels in interphase cells, independent of cell phases. Moreover, we observe changes in iSCORS signals of chromatin upon transcription inhibition, indicating that iSCORS can probe nanoscopic chromatin structures and dynamics associated with transcriptional activities. Our scattering-based optical microscopy, which does not require labeling, serves as a powerful tool for visualizing dynamic chromatin nano-arrangements in live cells. This advancement holds promise for studying chromatin remodeling in various crucial cellular processes, such as stem cell differentiation, mechanotransduction, and DNA repair.


Subject(s)
Chromatin , Chromatin/metabolism , Chromatin/chemistry , Humans , Spectrum Analysis/methods , Interferometry/methods , Chromatin Assembly and Disassembly , Cell Nucleus/metabolism
6.
Cureus ; 16(5): e60476, 2024 May.
Article in English | MEDLINE | ID: mdl-38883009

ABSTRACT

The treatment landscape for psoriatic arthritis (PsA) has evolved significantly with the introduction of biologic therapies, such as adalimumab, which effectively inhibits tumor necrosis factor-alpha (TNF-α) activity. However, despite their efficacy in controlling inflammation, biologic therapies are associated with heightened risks of infectious complications and malignancies. We present a case of a 66-year-old female with PsA treated with adalimumab who presented with recurrent systemic bacterial infections. Despite attempts to adjust dosing intervals to minimize infection risks, the patient experienced severe complications, including urosepsis, endocarditis, and liver abscesses. The dilemma arises in balancing PsA control with anti-TNFα therapy while minimizing infection risks. Current evidence supporting prophylactic antibiotics in such cases is limited, and determining the next steps for treatment involves challenging decisions such as withholding TNF inhibitors or switching to alternative immunomodulators. This case underscores the need for further research into prophylactic treatment and monitoring protocols to manage recurrent infections during anti-TNF-α therapy effectively.

7.
J Neurosci ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830764

ABSTRACT

Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's Disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-ß (Aß) pathology (PS2APP) or combined Aß and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.Significance Statement Multiple TREM2 agonist antibodies are investigated in mouse models of Alzheimer's Disease and Multiple Sclerosis. Despite agonism in culture models and after acute dosing in mice, antibodies do not show benefit in overall AD pathology and worsen recovery after demyelination.

8.
Cell Rep Med ; 5(5): 101547, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703764

ABSTRACT

Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Transcriptome/genetics , Male , Female , Middle Aged , Gene Expression Regulation, Neoplastic
9.
Respir Res ; 25(1): 209, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750527

ABSTRACT

BACKGROUND: Limited research has investigated the relationship between small airway dysfunction (SAD) and static lung hyperinflation (SLH) in patients with post-acute sequelae of COVID-19 (PASC) especially dyspnea and fatigue. METHODS: 64 patients with PASC were enrolled between July 2020 and December 2022 in a prospective observational cohort. Pulmonary function tests, impulse oscillometry (IOS), and symptom questionnaires were performed two, five and eight months after acute infection. Multivariable logistic regression models were used to test the association between SLH and patient-reported outcomes. RESULTS: SLH prevalence was 53.1% (34/64), irrespective of COVID-19 severity. IOS parameters and circulating CD4/CD8 T-cell ratio were significantly correlated with residual volume to total lung capacity ratio (RV/TLC). Serum CD8 + T cell count was negatively correlated with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) with statistical significance. Of the patients who had SLH at baseline, 57% continued to have persistent SLH after eight months of recovery, with these patients tending to be older and having dyspnea and fatigue. Post-COVID dyspnea was significantly associated with SLH and IOS parameters R5-R20, and AX with adjusted odds ratios 12.4, 12.8 and 7.6 respectively. SLH was also significantly associated with fatigue. CONCLUSION: SAD and a decreased serum CD4/CD8 ratio were associated with SLH in patients with PASC. SLH may persist after recovery from infection in a substantial proportion of patients. SAD and dysregulated T-cell immune response correlated with SLH may contribute to the development of dyspnea and fatigue in patients with PASC.


Subject(s)
COVID-19 , Lung , Post-Acute COVID-19 Syndrome , Respiratory Function Tests , Humans , Male , Female , Middle Aged , COVID-19/physiopathology , COVID-19/complications , COVID-19/epidemiology , COVID-19/diagnosis , COVID-19/immunology , Prospective Studies , Lung/physiopathology , Respiratory Function Tests/methods , Aged , Adult , Recovery of Function , Time Factors , Dyspnea/physiopathology , Dyspnea/epidemiology , Dyspnea/diagnosis , Forced Expiratory Volume/physiology
10.
Environ Toxicol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717057

ABSTRACT

Deoxyshikonin (DSK) is a biological component derived from Lithospermum erythrorhizon. Although DSK possesses potential anticancer activities, whether DSK exerts anticancer effects on cervical cancer cells is incompletely explored. This study was aimed to investigate the anticancer activity of DSK against cervical cancer cells and its molecular mechanisms. Cell viability was evaluated by MTT assay. Level of phosphorylation and protein was determined using Western blot. Involvement of signaling kinases was assessed by specific inhibitors. Our results revealed that DSK reduced viability of human cervical cell in a dose-dependent fashion. Meanwhile, DSK significantly elicited apoptosis of HeLa and SiHa cells. Apoptosis microarray was used to elucidate the involved pathways, and the results showed that DSK dose-dependently diminished cellular inhibitor of apoptosis protein 1 (cIAP1), cIAP2, and XIAP, and induced cleavage of poly(ADP-ribose) polymerase (PARP) and caspase-8/9/3. Furthermore, we observed that DSK significantly triggered activation of ERK, JNK, and p38 MAPK (p38), and only inhibition of p38 diminished the DSK-mediated pro-caspases cleavage. Taken together, our results demonstrate that DSK has anti-cervical cancer effects via the apoptotic cascade elicited by downregulation of IAPs and p38-mediated caspase activation. This suggests that DSK could act as an adjuvant to facilitate cervical cancer management.

11.
Commun Biol ; 7(1): 594, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760406

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.


Subject(s)
Adenosine Deaminase , Diet, High-Fat , Mice, Knockout , Non-alcoholic Fatty Liver Disease , RNA-Binding Proteins , Signal Transduction , Animals , Adenosine Deaminase/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/deficiency , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/etiology , Diet, High-Fat/adverse effects , Male , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Insulin Resistance , Mice, Obese , Obesity/metabolism , Obesity/genetics , Mice, Inbred C57BL , Liver/metabolism
12.
Cancers (Basel) ; 16(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672594

ABSTRACT

PURPOSE: To assess the efficacy of an IL-6 blockade with tocilizumab on treatment outcome of severe sepsis/septic shock in children with febrile neutropenia. METHODS: We performed a retrospective study of febrile neutropenic patients younger than 18 years old who developed severe sepsis/septic shock at a single medical center between November 2022 and October 2023. RESULTS: Seven patients with febrile neutropenia complicated with severe sepsis/septic shock were identified. Four of seven patients received tocilizumab in addition to standard of care. The median IL-6 level before administration of tocilizumab was 14,147 pg/mL (range: 672-30,509 pg/mL). All four patients successfully recovered from severe sepsis/septic shock. Three of seven patients received standard of care without tocilizumab. IL-6 levels were checked intwo2 patients, with a median of 1514.5 (range: 838-2191). Only one of three (33%) patients without tocilizumab therapy made a full recovery from severe sepsis/septic shock. The mortality rate was higher in patients without tocilizumab therapy compared to patients with tocilizumab therapy (67% vs. 0%). CONCLUSIONS: Administration of tocilizumab reduced mortality of severe sepsis/septic shock in children with febrile neutropenia. However, it warrants confirmation with a larger number of patients and a longer follow-up.

13.
J Pers Med ; 14(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673025

ABSTRACT

We aimed to develop and validate a machine learning model using impulse oscillometry system (IOS) profiles for accurately classifying patients into three assessment-based categories: no airflow obstruction, asthma, and chronic obstructive pulmonary disease (COPD). Our research questions were as follows: (1) Can machine learning methods accurately classify obstructive disease states based solely on multidimensional IOS data? (2) Which IOS parameters and modeling algorithms provide the best discrimination? We used data for 480 patients (240 with COPD and 240 with asthma) and 84 healthy individuals for training. Physiological and IOS parameters were combined into six feature combinations. The classification algorithms tested were logistic regression, random forest, neural network, k-nearest neighbor, and support vector machine. The optimal feature combination for identifying individuals without pulmonary obstruction, with asthma, or with COPD included 15 IOS and physiological features. The neural network classifier achieved the highest accuracy (0.786). For discriminating between healthy and unhealthy individuals, two combinations of twenty-three features performed best in the neural network algorithm (accuracy of 0.929). When distinguishing COPD from asthma, the best combination included 15 features and the neural network algorithm achieved an accuracy of 0.854. This study provides compelling technical evidence and clinical justifications for advancing IOS data-driven models to aid in COPD and asthma management.

14.
Transl Vis Sci Technol ; 13(4): 27, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38639929

ABSTRACT

Purpose: To understand the association between anatomical parameters of healthy eyes and optical coherence tomography (OCT) circumpapillary retinal nerve fiber layer (cpRNFL) thickness measurements. Methods: OCT cpRNFL thickness was obtained from 396 healthy eyes in a commercial reference database (RDB). The temporal quadrant (TQ), superior quadrant (SQ), inferior quadrant (IQ), and global (G) cpRNFL thicknesses were analyzed. The commercial OCT devices code these values based on percentiles (red, <1%; yellow, ≥1% and <5%), after taking age and disc area into consideration. Four anatomical parameters were assessed: fovea-to-disc distance, an estimate of axial length, and the locations of the superior and the inferior peaks of the cpRNFL thickness curve. Pearson correlation values were obtained for the parameters and the thickness measures of each of the four cpRNFL regions, and t-tests were performed between the cpRNFL thicknesses coded as abnormal (red or yellow, <5%) versus normal (≥5%). Results: For each of the four anatomical parameters, the correlation with the thickness of one or more of the TQ, SQ, IQ, and G regions exceeded the correlation with age or disc area. All four parameters were significantly (P < 0.001) associated with the abnormal cpRNFL values. The significant parameters were not the same for the different regions; for example, a parameter could be negatively correlated for the TQ but positively correlated with the SQ or IQ. Conclusions: In addition to age and disc area, which are used for inferences in normative databases, four anatomical parameters are associated with cpRNFL thickness. Translational Relevance: Taking these additional anatomical parameters into consideration should aid diagnostic accuracy.


Subject(s)
Retinal Ganglion Cells , Tomography, Optical Coherence , Fovea Centralis , Retina/diagnostic imaging , Tomography, Optical Coherence/methods , Clinical Trials as Topic , Humans
15.
J Basic Microbiol ; 64(6): e2300441, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470163

ABSTRACT

High-temperature-requirement protein A (HtrA) family proteins play important roles in controlling protein quality and are recognized as virulence factors in numerous animal and human bacterial pathogens. The role of HtrA family proteins in plant pathogens remains largely unexplored. Here, we investigated the HtrA family protein, DegQ, in the crucifer black rot pathogen Xanthomonas campestris pathovar campestris (Xcc). DegQ is essential for bacterial attachment and full virulence of Xcc. Moreover, the degQ mutant strain showed increased sensitivity to heat treatment and sodium dodecyl sulfate. Expressing the intact degQ gene in trans in the degQ mutant could reverse the observed phenotypic changes. In addition, we demonstrated that the DegQ protein exhibited chaperone-like activity. Transcriptional analysis displayed that degQ expression was induced under heat treatment. Our results contribute to understanding the function and expression of DegQ of Xcc for the first time and provide a novel perspective about HtrA family proteins in plant pathogen.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Plant Diseases , Xanthomonas campestris , Xanthomonas campestris/genetics , Xanthomonas campestris/pathogenicity , Xanthomonas campestris/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Plant Diseases/microbiology , Virulence/genetics , Virulence Factors/genetics , Virulence Factors/metabolism , Hot Temperature , Bacterial Adhesion/genetics , Sodium Dodecyl Sulfate/pharmacology , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Brassica/microbiology , Gene Expression Profiling , Mutation
16.
bioRxiv ; 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38496650

ABSTRACT

The FragPipe computational proteomics platform is gaining widespread popularity among the proteomics research community because of its fast processing speed and user-friendly graphical interface. Although FragPipe produces well-formatted output tables that are ready for analysis, there is still a need for an easy-to-use and user-friendly downstream statistical analysis and visualization tool. FragPipe-Analyst addresses this need by providing an R shiny web server to assist FragPipe users in conducting downstream analyses of the resulting quantitative proteomics data. It supports major quantification workflows including label-free quantification, tandem mass tags, and data-independent acquisition. FragPipe-Analyst offers a range of useful functionalities, such as various missing value imputation options, data quality control, unsupervised clustering, differential expression (DE) analysis using Limma, and gene ontology and pathway enrichment analysis using Enrichr. To support advanced analysis and customized visualizations, we also developed FragPipeAnalystR, an R package encompassing all FragPipe-Analyst functionalities that is extended to support site-specific analysis of post-translational modifications (PTMs). FragPipe-Analyst and FragPipeAnalystR are both open-source and freely available.

17.
Antiviral Res ; 223: 105824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309307

ABSTRACT

Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.


Subject(s)
Enterovirus Infections , Phosphorylcholine/analogs & derivatives , STAT3 Transcription Factor , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt , Apoptosis , Antigens, Viral , Enterovirus Infections/drug therapy , Interleukin-6 , Antiviral Agents/pharmacology
18.
Osteoarthritis Cartilage ; 32(5): 574-584, 2024 May.
Article in English | MEDLINE | ID: mdl-38218227

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of collagen derivatives for osteoarthritis. DESIGN: PubMed, Embase, and Cochrane Library were searched till June 2023 for randomized controlled trials (RCTs) investigating collagen derivatives for treating osteoarthritis. Data were independently extracted by two authors. The risk of bias was assessed using the RoB 2 tool. A random-effects meta-analysis was performed within a frequentist framework. The certainty of evidence was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluations approach. RESULTS: A total of 35 RCTs involving 3165 patients were included. The main analysis of the primary outcome was based on 25 RCTs involving 2856 patients. Collagen derivatives exerted small-to-moderate effects on pain alleviation (standardized mean difference [SMD] -0.35, 95% confidence interval [CI] -0.48 to -0.22, moderate certainty) and function improvement (SMD -0.31, 95%CI -0.41 to -0.22, high certainty) compared with the control. Collagen derivatives were safe; they did not increase the risk of withdrawal or adverse events compared with the control. The trial sequential analyses indicated that this study had sufficient statistical power for deriving definitive conclusions, confirming the robustness of our findings. CONCLUSIONS: Strong evidence supports the efficacy and safety of collagen derivatives for osteoarthritis treatment.


Subject(s)
Osteoarthritis , Humans , Osteoarthritis/drug therapy
19.
Plant Cell ; 36(5): 1504-1523, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38163641

ABSTRACT

As an essential nutrient element, phosphorus (P) is primarily acquired and translocated as inorganic phosphate (Pi) by plant roots. Pi is often sequestered in the soil and becomes limited for plant growth. Plants have developed a sophisticated array of adaptive responses, termed P starvation responses, to cope with P deficiency by improving its external acquisition and internal utilization. Over the past 2 to 3 decades, remarkable progress has been made toward understanding how plants sense and respond to changing environmental P. This review provides an overview of the molecular mechanisms that regulate or coordinate P starvation responses, emphasizing P transport, sensing, and signaling. We present the major players and regulators responsible for Pi uptake and translocation. We then introduce how P is perceived at the root tip, how systemic P signaling is operated, and the mechanisms by which the intracellular P status is sensed and conveyed. Additionally, the recent exciting findings about the influence of P on plant-microbe interactions are highlighted. Finally, the challenges and prospects concerning the interplay between P and other nutrients and strategies to enhance P utilization efficiency are discussed. Insights obtained from this knowledge may guide future research endeavors in sustainable agriculture.


Subject(s)
Phosphorus , Plants , Signal Transduction , Phosphorus/metabolism , Biological Transport , Plants/metabolism , Plant Roots/metabolism , Phosphates/metabolism , Nutrients/metabolism
20.
Environ Sci Technol ; 58(3): 1648-1658, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38175212

ABSTRACT

The semiconductor industry has claimed that perfluorooctanesulfonate (PFOS), a persistent per- and polyfluoroalkyl substance (PFAS), has been eliminated from semiconductor production; however, information about the use of alternative compounds remains limited. This study aimed to develop a nontarget approach to discovering diverse PFAS substitutions used in semiconductor manufacturing. A distinct fragment-based approach has been established to identify the hydrophobic and hydrophilic features of acidic and neutral fluorosurfactants through fragments and neutral losses, including those outside the homologous series. Ten sewage samples from 5 semiconductor plants were analyzed with target and nontarget analysis. Among the 20 identified PFAS spanning 12 subclasses, 15 were reported in semiconductor sewage for the first time. The dominant identified PFAS compounds were C4 sulfonamido derivatives, including perfluorobutane sulfonamido ethanol (FBSE), perfluorobutane sulfonamide (FBSA), and perfluorobutane sulfonamido diethanol (FBSEE diol), with maximum concentrations of 482 µg/L, 141 µg/L, and 83.5 µg/L in sewage, respectively. Subsequently, three ultrashort chain perfluoroalkyl acids (PFAAs) were identified in all samples, ranging from 0.004 to 19.9 µg/L. Three effluent samples from the associated industrial wastewater treatment plants (WWTPs) were further analyzed. This finding, that the C4 sulfonamido acetic acid series constitutes a significant portion (65%-82%) of effluents from WWTP3 and WWTP4, emphasizes the conversion of fluorinated alcohols to fluorinated acids during aerobic treatment. The identification of the intermediate metabolites of FBSEE diol, further supported by our laboratory batch studies, prompts the proposal of a novel metabolic pathway for FBSEE diol. The total amount of perfluorobutane sulfonamido derivatives reached 1934 µg/L (90%), while that of PFAAs, which have typically received attention, was only 205 µg/L (10%). This suggests that perfluorobutane sulfonamido derivatives are emerging as a new trend in fluorosurfactants used in the semiconductor industry, serving as PFAS precursors and contributing to the release of their metabolites into the environment.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Sewage/chemistry , Surface-Active Agents , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...