Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 267: 129196, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33340881

ABSTRACT

Green tea (GT) leaves can be brewed into a solution rich in polyphenols that serve as effective reducing agents, and the complexes formed by combining green tea with ferrous ion (GT/Fe(II)) can provide an elevated reduction potential. The dissociated GT polyphenols at alkaline pH can dramatically increase the formation of GT/Fe(II) complexes. This experimental work evaluated the reductive reactivity of alkaline GT solution and GT/Fe(II) complexes (at pH 10) on 14 halogenated volatile organic compounds (VOCs). Carbon tetrachloride (CT), with a highest carbon oxidation state (COS) of IV, was observed to be degradable by the alkaline GT solution, while all others proved ineffective. The GT/Fe(II) complexes are very reactive and capable of degrading halogenated methanes, ethanes, and ethenes, in which chemical structures exhibit zero or positive COS values, and the chlorine or bromine atom is bonded at the saturated carbon atom, such as CT, chloroform, bromoform, dibromomethane, 1,1,1-trichloroethane, and 1,1,1,2-tetrachloroethane. The linear free energy relationship (LFER) approach was used to determine the overall reduction potentials (EH0) of the alkaline GT solution and GT/Fe(II) complexes, which were found to be -0.131 V and -0.368 V, respectively. These findings demonstrated that GT/Fe(II) complexes exhibit the potential to remediate halogenated contaminants and the EH0 information obtained in this study may serve as a reference in determining probable reactivity that contributes to degradation of environmental contaminants.


Subject(s)
Iron , Tea , Carbon Tetrachloride , Oxidation-Reduction , Solvents
2.
Water Res ; 155: 362-371, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30856520

ABSTRACT

Tetrafluoroborate anion (BF4-) is found in the streams of flue-gas desulfurization and borosilicate glasses etching which deteriorates water quality through slow hydrolysis into boric acid and fluoride. Decomposition and electrocoagulation (EC) of BF4- were studied using metallic aluminum as the sacrificial electrode. The dissolved Al(III) from the anode could efficiently decompose BF4- in forms of fluoroaluminate complexes, and the derived boric acid and fluoride ion were removed by sweep flocculation. Major variables were investigated to optimize EC, including the reaction pH, initial concentration of BF4-, current density and electrolyte type. The mechanism of EC process was elucidated with the kinetics of consecutive reactions. Experimental results suggested that the removal of BF4- and total fluoride were less influenced by pH, and that of total boron reached a maximum at pH 8 which favored the surface complexation between borate species and EC precipitates. Under the conditions: [BF4-]0 = 9.3 mM, [NaCl] = 10 mM, pH = 8.0, current density = 5 mA/cm2, 98.3% of BF4- was decomposed and the removal of total fluoride and boron attained 98.2% and 74.1%, respectively within 3 h. EC using the Al electrode outperformed the conventional chemical coagulation and reduced the levels of BF4, B(OH)3 and F- in aqueous solution synergically.


Subject(s)
Water Pollutants, Chemical , Water Purification , Aluminum , Boron , Electrocoagulation , Electrodes , Fluorides , Fluorine , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL