Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(7)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35890201

ABSTRACT

Diabetes is commonly treated with glucagon-like peptide-1 receptor (GLP-1R) agonists including liraglutide and others. However, liraglutide was found to raise plasma glucose levels in normal rats. The current study aims to determine how liraglutide causes this contentious condition in rats, both normal and diabetic. An adrenalectomy was performed to investigate the relationship between steroid hormone and liraglutide. To investigate the effect of central liraglutide infusion on blood glucose in rats, rats were intracerebroventricularly administrated with liraglutide with or without HPA axis inhibitors such as berberine and dexamethasone. The results showed that a single injection of liraglutide caused a temporary increase in blood glucose in healthy rats. Another GLP-1R agonist, Exendin-4 (Ex-4), increased blood sugar in a manner similar to that of liraglutide. The effects of liraglutide were also blocked by guanethidine pretreatment and vanished in normal rats with adrenalectomy. Additionally, central infusion of liraglutide via intracerebroventricular (icv) injection into normal rats also causes a temporary increase in blood glucose that was blocked by GLP-1R antagonists or the inhibitors such as berberine and dexamethasone. Similarly, central liraglutide treatment causes temporary increases in plasma glucose, adrenocorticotropic hormone (ACTH), and cortisol levels, which were reversed by inhibitors for the hypothalamic-pituitary-adrenal (HPA) axis. In normal rats, the temporary glucose-increasing effect of liraglutide was gradually eliminated during consecutive daily treatments, indicating tolerance formation. Additionally, liraglutide and Ex-4 cross-tolerance was also discovered in normal rats. Liraglutide was more effective in diabetic rats than in normal rats in activating GLP-1R gene expression in the isolated adrenal gland. Interestingly, the effect of liraglutide on glycemic control varied depending on whether the rats were diabetic or not. In normal rats, bolus injection of liraglutide, such as Ex-4, may stimulate the HPA axis, resulting in hyperglycemia. The cross-tolerance of liraglutide and Ex-4 provided a novel perspective on GLP-1R activation.

2.
Life (Basel) ; 11(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34357066

ABSTRACT

Adipose-derived cytokines may contribute to the inflammation that occurs in metabolic syndrome (MetS). The Takeda G protein-coupled receptor (TGR5) regulates energy expenditure and affects the production of pro-inflammatory biomarkers in metabolic diseases. Etanercept, which acts as a tumor necrosis factor (TNF)-α antagonist, can also block the inflammatory response. Therefore, the interaction between TNF-α and TGR5 expression was investigated in rats with high-fat diet (HFD)-induced obesity. Heart tissues isolated from the HFD-induced MetS rats were analyzed. Changes in TGR5 expression were investigated with lithocholic acid (LCA) as the agonist. Betulinic acid (BA) was used to activate TGR5 in urinary bladders. LCA was more effective in the heart tissues of HFD-fed rats, although etanercept alleviated the function of LCA. STAT3 activation and higher TGR5 expression were observed in the heart tissues collected from HFD-fed rats. Thus, cardiac TGR5 expression is promoted by HFD through STAT3 activation in rats. Moreover, the urinary bladders of female rats fed a HFD showed a low response, which was reversed by etanercept. Relaxation by BA in the bladders was more marked in HFD-fed rats. The high TGR5 expression in HFD-fed rats was characterized using a mRNA assay, and the increased cAMP levels were found to be stimulated by BA in the isolated bladders. Therefore, TGR5 expression increases with a HFD in both the hearts and urinary bladders. Collectively, cytokine-medicated TGR5 activation was observed in the hearts and urinary bladders of rats.

SELECTION OF CITATIONS
SEARCH DETAIL
...