Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (196)2023 06 09.
Article in English | MEDLINE | ID: mdl-37358271

ABSTRACT

Transduced mouse immature thymocytes can be differentiated into T cells in vitro using the delta-like 4-expressing bone marrow stromal cell line co-culture system (OP9-DL4). As retroviral transduction requires dividing cells for transgene integration, OP9-DL4 provides a suitable in vitro environment for cultivating hematopoietic progenitor cells. This is particularly advantageous when studying the effects of the expression of a specific gene during normal T cell development and leukemogenesis, as it allows researchers to circumvent the time-consuming process of generating transgenic mice. To achieve successful outcomes, a series of coordinated steps involving the simultaneous manipulation of different types of cells must be carefully performed. Although these are very well-established procedures, the lack of a common source in the literature often means a series of optimizations are required, which can be time-consuming. This protocol has been shown to be efficient in transducing primary thymocytes followed by differentiation on OP9-DL4 cells. Detailed here is a protocol that can serve as a quick and optimized guide for the co-culture of retrovirally transduced thymocytes on OP9-DL4 stromal cells.


Subject(s)
Leukemia, T-Cell , Thymocytes , Mice , Animals , Thymocytes/metabolism , Coculture Techniques , Cell Differentiation/physiology , Stromal Cells , Mice, Transgenic , Oncogenes , Leukemia, T-Cell/genetics , Leukemia, T-Cell/metabolism
2.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36675167

ABSTRACT

Four Ras guanine nucleotide-releasing proteins (RasGRP1 through 4) belong to the family of guanine nucleotide exchange factors (GEFs). RasGRPs catalyze the release of GDP from small GTPases Ras and Rap and facilitate their transition from an inactive GDP-bound to an active GTP-bound state. Thus, they regulate critical cellular responses via many downstream GTPase effectors. Similar to other RasGRPs, the catalytic module of RasGRP1 is composed of the Ras exchange motif (REM) and Cdc25 domain, and the EF hands and C1 domain contribute to its cellular localization and regulation. RasGRP1 can be activated by a diacylglycerol (DAG)-mediated membrane recruitment and protein kinase C (PKC)-mediated phosphorylation. RasGRP1 acts downstream of the T cell receptor (TCR), B cell receptors (BCR), and pre-TCR, and plays an important role in the thymocyte maturation and function of peripheral T cells, B cells, NK cells, mast cells, and neutrophils. The dysregulation of RasGRP1 is known to contribute to numerous disorders that range from autoimmune and inflammatory diseases and schizophrenia to neoplasia. Given its position at the crossroad of cell development, inflammation, and cancer, RASGRP1 has garnered interest from numerous disciplines. In this review, we outline the structure, function, and regulation of RasGRP1 and focus on the existing knowledge of the role of RasGRP1 in leukemia and other cancers.


Subject(s)
Guanine Nucleotide Exchange Factors , Immune System , Neoplasms , Humans , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/immunology , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotides , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell , T-Lymphocytes/immunology , Immune System/cytology , Immune System/immunology
3.
Cytokine ; 160: 156049, 2022 12.
Article in English | MEDLINE | ID: mdl-36201890

ABSTRACT

OVERVIEW: IL-7 is a member of the family of cytokines with four anti-parallel α helixes that bind Type I cytokine receptors. It is produced by stromal cells and is required for development and homeostatic survival of lymphoid cells. GENOMIC ARCHITECTURE: Interleukin 7 (IL7) human IL7: gene ID: 3574 on ch 8; murine Il7 gene ID: 16,196 on ch 3. PROTEIN: Precursor contains a signal sequence, mature human IL-7 peptide 152aa, predicted 17.4kd peptide, glycosylated resulting in 25kd. Crystal structure: http://www.rcsb.org/structure/3DI2. REGULATION OF IL-7 PRODUCTION: Major producers are stromal cells in thymus, bone marrow and lymphoid organs but also reported in other tissues. Production is primarily constitutive but reported to be affected by IFNγ and other factors. IL-7 RECEPTORS: Two chains IL-7Rα (IL-7R) and γc (IL-2RG). Human IL-7R: gene ID 3575 on ch 5; human IL2RG: gene ID 3561 on ch X; mouse IL-7R: gene ID 16,197 on ch 15; murine Il2rg gene ID 16,186 on ch X. Member of γc family of receptors for cytokines IL-2, -4, -9, -15, and -21. Primarily expressed on lymphocytes but reports of other cell types. Expression in T-cells downregulated by IL-7. Low expression on Tregs, no expression on mature B-cells. Crystal structure: http://www.rcsb.org/structure/3DI2. IL-7 RECEPTOR SIGNAL TRANSDUCTION PATHWAYS: Major signals through JAK1, JAK3 to STAT5 and through non-canonical STAT3, STAT1, PI3K/AKT and MEK/ERK pathways. BIOLOGICAL ACTIVITY OF IL-7: Required for survival of immature thymocytes, naïve T-cells, memory T-cells, pro-B-cells and innate lymphocytes. Pharmacological treatment with IL-7 induces expansion of naïve and memory T-cells and pro-B-cells. ABNORMALITIES OF THE IL-7 PATHWAY IN DISEASE: Deficiencies in the IL-7 pathway in humans and mice result in severe combined immunodeficiency due to lymphopenia. Excessive signaling of the pathway in mice drives autoimmune diseases and in humans is associated with autoimmune syndromes including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, sarcoidosis, atopic dermatitis and asthma. Mutations in the IL-7 receptor pathway drive acute lymphoblastic leukemia. CLINICAL APPLICATIONS: IL-7 has been evaluated in patients with cancer and shown to expand lymphocytes. It accelerated lymphocyte recovery after hematopoietic stem cell transfer, and increased lymphocyte counts in AIDS patients and sepsis patients. Monoclonal antibodies blocking the IL-7 receptor are being evaluated in autoimmune diseases. Cytotoxic monoclonals are being evaluated in acute lymphoblastic leukemia. Drugs blocking the signal transduction pathway are being tested in autoimmunity and acute lymphoblastic leukemia.


Subject(s)
Autoimmune Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Antibodies, Monoclonal , Humans , Interleukin-2/metabolism , Interleukin-7/pharmacology , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Sorting Signals , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism
4.
J Vet Diagn Invest ; 34(4): 662-667, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35673776

ABSTRACT

Soft tissue sarcomas (STSs) are common well-described cutaneous neoplasms in many domestic species. Few cutaneous neoplasms have been reported in cervids, other than papilloma virus-induced benign cutaneous fibromas (BCFs). Two wild-caught Alaskan moose (Alces alces), housed at different North American zoos, were both presented with lameness and a mass. The gross appearance of each mass varied greatly; case 1 had a distinct, exophytic, ulcerated mass near the right carpal joint similar in appearance to a BCF, and case 2 had a pronounced swelling over the left hip. Based on histologic evaluation, both masses were diagnosed as STS. The clinical presentation of these masses included rapid growth and associated lameness; however, gross appearance was markedly different. Histopathology revealed characteristics typical of STS in other species, including spindle-shaped cells arranged in streaming sheets with ovoid nuclei. STS should be included as a differential diagnosis for moose with a cutaneous or subcutaneous soft tissue mass or swelling.


Subject(s)
Deer , Sarcoma , Animals , Animals, Wild , Animals, Zoo , Lameness, Animal , Sarcoma/diagnosis , Sarcoma/veterinary
5.
Vet Pathol ; 59(3): 433-441, 2022 05.
Article in English | MEDLINE | ID: mdl-35001750

ABSTRACT

Mammary gland neoplasms in macropods are uncommonly reported, and the morphological and immunohistochemical characteristics are incompletely described. The goal of this study was to describe the morphologic features of macropod mammary neoplasms and to determine the molecular subtypes of mammary carcinomas using a panel of antibodies against estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (Her-2), p63, smooth muscle actin (SMA), and epidermal growth factor receptor (EGFR). Biopsy and necropsy specimens were examined from 21 macropods with mammary tumors submitted to Northwest ZooPath from 1996 to 2019. In accordance with the histologic classification of canine mammary tumors proposed by Goldschmidt and colleagues, tubulopapillary (2), tubular (10), and comedo-carcinomas (2), adenoma (1), lobular hyperplasia (3), fibroadenomatous hyperplasia (1), and mastitis (2) were diagnosed. Red kangaroos (Osphranter rufus) were most commonly diagnosed with mammary carcinomas (79% of all carcinomas). Seven carcinomas had lymphovascular invasion and 2 also had pulmonary metastases. Six of these 7 carcinomas were classified as grade 3. Immunohistochemistry (IHC) for all antibodies was performed on 9/14 carcinomas, and partial IHC was performed for 3 cases. All 12 carcinomas were immunoreactive for PR, 5 for ER, 9 for EGFR, and none for Her-2. Five of the 9 mammary carcinomas with complete IHC data were classified as luminal A subtype, and 4 were normal-like subtype. Accurate classification of mammary tumors in macropods based on morphology, immunohistological characteristics, and molecular subtype may be helpful in guiding clinical management, prognosis, and potential therapeutic targets.


Subject(s)
Breast Neoplasms , Carcinoma , Dog Diseases , Mammary Neoplasms, Animal , Animals , Breast Neoplasms/metabolism , Breast Neoplasms/veterinary , Carcinoma/veterinary , Dog Diseases/diagnosis , Dog Diseases/pathology , Dogs , Female , Hyperplasia/veterinary , Immunohistochemistry , Mammary Neoplasms, Animal/pathology , Receptors, Estrogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...