Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-17, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820568

ABSTRACT

This study aimed to create a comprehensive evaluation method for sewage sludge (SS) treatment and disposal technologies, considering carbon emission and environmental impacts. Life cycle assessment (LCA) were conducted on six SS treatment and disposal technologies in China. The assessments used the IPCC emission factor approach to calculate carbon emissions and the CML2001 method to determine environmental impact factors. Additionally, a colour-coded method was implemented to quantify the evaluation results. The study found that S1 (anaerobic digestion + land application) had the lowest carbon emissions and environmental impact, making it the optimal technology. The S1 scenario had carbon emissions of 669 kg CO2(t DS)-1 and environmental impacts of 5.20E-10. A sensitivity analysis was conducted to show the impacts of each unit in the six technologies on total carbon emissions and environmental impacts. The results showed that landfilling has a high sensitivity to carbon emissions and environmental impacts. Therefore, controlling greenhouse gases and toxic substances in sludge landfills is crucial for reducing carbon emissions and environmental pollution.

2.
Environ Technol ; : 1-11, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37477378

ABSTRACT

ABSTRACTAnaerobic ammonia oxidation process has the advantages of energy and cost reduction, therefore, it has been considered as one of the main alternatives to conventional biological denitrification process in recent years. Biochar has been applied in the anammox process for nitrogen removal efficiency. But, due to its extracellular electron transfer capacity and abundance of redox-specific functional groups, which served as extracellular electron acceptor to anaerobically oxidize NH4+ is still controversy. In this study, the anaerobic ammonia oxidation was investigated when biochar was used as electron acceptor in the wastewater. According to the optimal process variables determined in the batch tests, when the influent NH4+-N concentration in the anaerobic ammonia oxidation reaction was 30-50 mg/L and the biochar dosing was at 10 g/L, it showed some promotion in the long-term experiments. The anaerobic ammonia oxidation process with biochar as the electron acceptor reached more than 60% NH4+-N removal efficiency in the system, and the ΔNO3--N/ΔNH4+-N ratio reached 0.19 which tended to the theoretical value. After 20 days, the voltage in the system keeps fluctuating about 4 mV, indicated that the functional bacteria using biochar as the electron acceptor gradually dominated the system. In addition, the abundance of norank_f__norank_o__SBR1031 in the Chloroflexi phylum has increased significantly at 29.92%, while the abundance of the major genus Candidatus_Kuenenia in AnAOB has decreased slightly at 11.47%.

3.
Bioresour Technol ; 355: 127265, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35526714

ABSTRACT

p-Nitrophenol is usually present in ammonia-rich wastewaters produced by some chemical plants. In this work, the response of anammox process to long-term p-nitrophenol stress was investigated. The changes in the efficiency, sludge characteristics, and microorganisms of the anammox system under different levels of p-nitrophenol stress were examined, and the potential stress mechanisms of p-nitrophenol on anammox were further speculated. The results showed that 10-50 mg/L p-nitrophenol had no obvious impact on nitrogen removal efficiency, but stimulated the secretion of more extracellular polymeric substances. 60 mg/L p-nitrophenol caused the nitrogen removal efficiency to decrease by 64.5% in 5 days. Long-term exposure to p-nitrophenol led to 8.6% reduction in Candidatus_Kuenenia abundance and 18.4%-35.9% decrease in the expression level of anammox bacterial functional genes. Molecular simulation indicated that p-nitrophenol could bind to key enzymes of anammox. This study provides new insights into the treatment of wastewater containing p-nitrophenol or phenol by anammox.


Subject(s)
Anaerobic Ammonia Oxidation , Bioreactors , Anaerobiosis , Bioreactors/microbiology , Denitrification , Nitrogen/analysis , Nitrophenols , Oxidation-Reduction , Sewage , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL
...