Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119620, 2024 02.
Article in English | MEDLINE | ID: mdl-37926157

ABSTRACT

Fibroblast growth factor 21 (FGF21) is a key regulator of energy metabolism. Recent studies suggested that serum FGF21 levels increase with declining renal function. However, the link between FGF21 and kidney diseases and the direct effect of FGF21 in renal fibrosis remains unclear. In this study, FGF21 was upregulated in unilateral ureteral obstruction (UUO)-induced renal fibrosis and cellular fibrosis induced by transforming growth factor-ß, and renal expression of FGF21 was positively correlated with fibrosis markers. Additionally, FGF21 was regulated by Wnt/ß-catenin signaling pathway. The knockdown and overexpression of FGF21 in mouse tubular epithelial cells demonstrated that FGF21 alleviates renal fibrosis by inhibiting the Wnt/ß-catenin signaling pathway. To investigate the effect of FGF21 on renal fibrosis in vivo, we established an overexpression model by injecting the plasmid in mice and found that FGF21 overexpression relieved UUO-induced renal fibrosis and renal inflammatory response. Taken together, FGF21 is upregulated with the activation of Wnt/ß-catenin signaling pathway and alleviates renal fibrosis by inhibiting the activation of Wnt/ß-catenin signaling pathway in a negative feedback mode. These results provide a new understanding for the source of elevated serum FGF21 in patients with chronic kidney disease and prove that FGF21 is a direct inhibitor of the progression of renal fibrosis, thus providing novel therapeutic intervention insights for renal fibrosis.


Subject(s)
Fibroblast Growth Factors , Kidney Diseases , Ureteral Obstruction , Humans , Mice , Animals , Ureteral Obstruction/complications , Ureteral Obstruction/metabolism , Wnt Signaling Pathway , Kidney Diseases/genetics , Kidney Diseases/metabolism , Fibrosis
2.
Cell Death Dis ; 12(12): 1087, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34789720

ABSTRACT

Phosphatase and Tensin Homolog on chromosome Ten (PTEN) has emerged as a key protein that governs the response to kidney injury. Notably, renal adaptive repair is important for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. To test the role of PTEN in renal repair after acute injury, we constructed a mouse model that overexpresses PTEN in renal proximal tubular cells (RPTC) by crossing PTENfl-stop-fl mice with Ggt1-Cre mice. Mass spectrometry-based proteomics was performed after subjecting these mice to ischemia/reperfusion (I/R). We found that PTEN was downregulated in renal tubular cells in mice and cultured HK-2 cells subjected to renal maladaptive repair induced by I/R. Renal expression of PTEN negatively correlated with NGAL and fibrotic markers. RPTC-specific PTEN overexpression relieved I/R-induced maladaptive repair, as indicated by alleviative tubular cell damage, apoptosis, and subsequent renal fibrosis. Mass spectrometry analysis revealed that differentially expressed proteins in RPTC-specific PTEN overexpression mice subjected to I/R were significantly enriched in phagosome, PI3K/Akt, and HIF-1 signaling pathway and found significant upregulation of CHMP2A, an autophagy-related protein. PTEN deficiency downregulated CHMP2A and inhibited phagosome closure and autolysosome formation, which aggravated cell injury and apoptosis after I/R. PTEN overexpression had the opposite effect. Notably, the beneficial effect of PTEN overexpression on autophagy flux and cell damage was abolished when CHMP2A was silenced. Collectively, our study suggests that PTEN relieved renal maladaptive repair in terms of cell damage, apoptosis, and renal fibrosis by upregulating CHMP2A-mediated phagosome closure, suggesting that PTEN/CHMP2A may serve as a novel therapeutic target for the AKI to CKD transition.


Subject(s)
Acute Kidney Injury/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Kidney Tubules/metabolism , PTEN Phosphohydrolase/metabolism , Phagosomes/metabolism , Acute Kidney Injury/pathology , Animals , Cell Line , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Kidney Tubules/cytology , Male , Mice
3.
Exp Cell Res ; 406(1): 112729, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34242625

ABSTRACT

Phosphatase and tensin homolog (PTEN) deleted on human chromosome 10 is a tumor suppressor with bispecific phosphatase activity, which is often involved in the study of energy metabolism and tumorigenesis. PTEN is recently reported to participate in the process of acute injury. However, the mechanism of PTEN in Ischemia-Reperfusion Injury (IRI) has not yet been clearly elucidated. In this study, mice with bilateral renal artery ischemia-reperfusion and HK-2 cells with hypoxia/reoxygenation (H/R) were used as acute kidney injury models. We demonstrated that PTEN was downregulated in IRI-induced kidney as well as in H/R-induced HK-2 cells. By silencing and overexpressing PTEN with si-PTEN RNA and PHBLV-CMV-PTEN-flag lentivirus before H/R, we found that PTEN protected HK-2 cells against H/R-induced injury reflected by the change in cell activity and the release of LDH. Furthermore, we inhibited HIF1-α with PX-478 and inactivated mTOR with Rapamycin before the silence of PTEN in H/R model. Our data indicated that the renoprotective effect of PTEN worked via PI3K/Akt/mTOR pathway and PI3K/Akt/HIF1-α pathway, hence alleviating apoptosis and improving autophagy respectively. Our findings provide valuable insights into the molecular mechanism underlying renoprotection of PTEN on autophagy and apoptosis induced by renal IRI, which offers a novel therapeutic target for the treatment of AKI.


Subject(s)
Acute Kidney Injury/prevention & control , Autophagy/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Reperfusion Injury/prevention & control , TOR Serine-Threonine Kinases/genetics , Acute Kidney Injury/genetics , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis/genetics , Cell Line , Disease Models, Animal , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Gene Expression Regulation , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/metabolism , Kidney/surgery , Male , Mice , Mice, Inbred C57BL , Mustard Compounds/pharmacology , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Phenylpropionates/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL