Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters











Publication year range
1.
J Phys Chem A ; 128(31): 6474-6481, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39054778

ABSTRACT

Recently, Liu et al. reported 1,4-dithiazole-5,10-dihydrophenazine (DTDHP) and its B ← N-fused derivative (DTHDHP-BF2), which were expected to show excellent optoelectronic properties (Angew. Chem. Int. Ed. 2022, 61, e202205893). However, their charge-transport performance and luminescence emission mechanisms have not been revealed. In this work, we used density functional theory (DFT) calculations to investigate the optoelectronic properties of DTDHP and DTHDHP-BF2 and analyzed the influence of the introduction of -BF2 on the basic parameters governing charge transport and injection in detail. Our calculation results showed that adding -BF2 could stabilize the frontier molecular orbitals and decrease the reorganization energies associated with electron transport due to the formation of B ← N bonds, and the intermolecular electronic couplings are greatly enhanced owing to the strong intermolecular F···H interactions. Based on the master equation coupled with the Marcus-Hush electron transfer theory, we theoretically predicted the charge transport properties of DTDHP and DTHDHP-BF2. The optimum hole mobility (3.87 cm2 V-1 S-1) and electron mobility (1.52 cm2 V-1 S-1) of DTHDHP-BF2 are, respectively, 3 and 9 times as high as the corresponding optimum values of compound DTDHP. Moreover, the assignments of multiple fluorescence bands in the experiment were confirmed by time-dependent density functional theory (TDDFT) calculations. The simulated emission spectra indicate that the experimental fluorescence maxima at 687 nm originates from the S1 → S0 transition of the double proton transfer phototautomer (T2H) of DTDHP, and the shoulder peak at ∼660 nm may be related to the excited-state single-proton transfer phototautomer (T1H); for DTHDHP-BF2, the experimental fluorescence maxima at 687 nm should be attributed to normal Stokes shifted emission, and the shifted fluorescence with a peak at 751 nm originates from the emission of the photodissociation product of DTHDHP-BF2.

2.
Adv Mater ; 36(16): e2311764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38181062

ABSTRACT

Semiconductor quantum wells (QWs) exhibit high charge-utilization efficiency for light-emitting applications due to their strong charge confinement effect. Inspired by this effect, herein, this work proposes a new idea to significantly improve the photo-generated charge separation for attaining a highly-efficient solar-to-fuels conversion process through "semi-reversing" the conventional QWs to confine only the photo-generated electrons. This electron confinement-improved charge separation is implemented in the well-designed model of the CdS/TiO2/CdS semi-reversed QW (SRQW) structure. The latter is fabricated by selectively assembling CdS quantum dots (QDs) onto the {101} facets (ultra-thin edge regions) of the TiO2 nanosheets (NSs). Upon light excitation, the photo-generated electrons of SRQW can be confined on the TiO2-{101} facets in the vicinity of the CdS/TiO2 hetero-interface. Thereby, the continuous multi-electron injection to the adsorbed reactants on the interfacial active-sites is significantly accelerated. Thus, the CdS/TiO2/CdS SRQW exhibits ≈35.7 and ≈56.0-fold enhancements on the photocatalytic activities for water and CO2 reduction, respectively, compared to those of pure TiO2. Correspondingly, its CH4-product selectivity is increased by ≈180%. This work provides a novel charge separation mechanism, which is of great importance for the design of the next-generation quantum-sized photocatalysts for solar-to-fuels conversion.

3.
Sci Adv ; 9(35): eadi7931, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37656785

ABSTRACT

Lanthanide-doped lead halide perovskites have demonstrated great potential for photoelectric applications. However, there is a long-standing controversy about the existence of lanthanide ions, e.g., whether the doping of Ln3+ is successful or not; the substituting sites of Ln3+ in lead halide perovskites are unclear. We directly identify the doped Yb3+ in CsPbCl3 perovskites by using the state-of-the-art transmission electron microscopy and three-dimensional atom probe tomography at atomic scale. Different from the previous assumptions and/or results, we evidence that Yb3+ simultaneously replace Pb2+ and occupy the lattice interstitial sites. Furthermore, we directly observe the cluster phenomenon of CsPbCl3 single crystal at near atomic scale. Density functional theory modeling further confirms and explains the mechanisms of our findings. Our findings thus provide an atomic-level understanding of the doping mechanism in perovskites and will stimulate a further thinking of the doping effect on the performance of perovskites.

4.
J Phys Chem A ; 127(4): 966-972, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36658101

ABSTRACT

The intramolecular proton transfer (IPT) reaction potential energy surfaces (PESs) of N,N'-bis(salicylidene)-[2-(3',4'-diaminophenyl)benzthiazole] (BTS) in the S0 state and S1 state are constructed. It is found that the IPT reactions in the ground state hardly take place due to the high reaction energy barrier for single-proton (6.3 kcal/mol) and double-proton transfer (14.1 kcal/mol) reactions and low backward reaction energy barriers for single-proton (1.9 kcal/mol) and double-proton transfer (1.2 kcal/mol) reactions. In comparison, an excited-state intramolecular single-proton transfer reaction is a barrierless and exothermic process, and thus, single-proton transfer tautomer T1H contributes most to the fluorescence emission. Based on the analysis of PESs, the experimental absorption and emission spectra are reproduced well by the calculated vertical excitation energies of BTS and its photoisomerization products, and the triple fluorescence emission profile in the experiment is reassigned unequivocally. Furthermore, thermodynamic analysis of the BTS-Cu(II) complex shows that the dinuclear complex (C1) with Cu(II) coordinating with O and N atoms of the hydrogen bonds is the most thermodynamically stable structure, and the intramolecular hydrogen bonding structure in BTS is destroyed due to the chelation of Cu(II) and BTS; as a result, the IPT reaction of C1 in S0 and S1 states is significantly inhibited. The inhibitor of Cu(II) in the IPT reaction plays a major role in fluorescence quenching.

5.
Adv Mater ; 34(14): e2109330, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35112406

ABSTRACT

Plasmonic nanostructures have tremendous potential to be applied in photocatalytic CO2 reduction, since their localized surface plasmon resonance can collect low-energy-photons to derive energetic "hot electrons" for reducing the CO2 activation-barrier. However, the hot electron-driven CO2 reduction is usually limited by poor efficiency and low selectivity for producing kinetically unfavorable hydrocarbons. Here, a new idea of plasmonic active "hot spot"-confined photocatalysis is proposed to overcome this drawback. W18 O49 nanowires on the outer surface of Au nanoparticles-embedded TiO2 electrospun nanofibers are assembled to obtain lots of Au/TiO2 /W18 O49 sandwich-like substructures in the formed plasmonic heterostructure. The short distance (< 10 nm) between Au and adjacent W18 O49 can induce an intense plasmon-coupling to form the active "hot spots" in the substructures. These active "hot spots" are capable of not only gathering the incident light to enhance "hot electrons" generation and migration, but also capturing protons and CO through the dual-hetero-active-sites (Au-O-Ti and W-O-Ti) at the Au/TiO2 /W18 O49 interface, as evidenced by systematic experiments and simulation analyses. Thus, during photocatalytic CO2 reduction at 43± 2 °C, these active "hot spots" enriched in the well-designed Au/TiO2 /W18 O49 plasmonic heterostructure can synergistically confine the hot-electron, proton, and CO intermediates for resulting in the CH4 and CO production-rates at ≈35.55 and ≈2.57 µmol g-1 h-1 , respectively, and the CH4 -product selectivity at ≈93.3%.

6.
ACS Omega ; 7(51): 48391-48402, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36591146

ABSTRACT

Herein, we systematically studied the electronic and conducting properties of 9,10-anthraquinone (AQ) and its derivatives and discussed the substitute-site effects on their organic field-effect transistor (OFET) properties in detail. Our calculation results show the influence of different substitute sites on the ionization potential (IP), electronic affinity (EA), reorganization energy (λ), electronic couplings (V), and anisotropic mobility (µ) of semiconducting materials, which mainly originates from the variations of the frontier molecular orbital charge distributions, the steric hindrance, and the conjugate degree. Combining quantum-chemical calculations with charge transfer theory, we simulated the intermolecular hopping rate in the organic crystals of AQ derivatives and predicted the fluctuation range of three-dimensional (3D) anisotropic charge carrier mobility for the first time. Our calculation results well reproduced the experimental observations and provided evidence for the determination of the optimal OFET conduction plane and channel direction relative to the crystal axis.

7.
Nat Commun ; 11(1): 1079, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32103001

ABSTRACT

Extension and clustering of polycyclic aromatic hydrocarbons (PAHs) are key mechanistic steps for coking and deactivation in catalysis reactions. However, no unambiguous mechanistic picture exists on molecule-resolved PAHs speciation and evolution, due to the immense experimental challenges in deciphering the complex PAHs structures. Herein, we report an effective strategy through integrating a high resolution MALDI FT-ICR mass spectrometry with isotope labeling technique. With this strategy, a complete route for aromatic hydrocarbon evolution is unveiled for SAPO-34-catalyzed, industrially relevant methanol-to-olefins (MTO) as a model reaction. Notable is the elucidation of an unusual, previously unrecognized mechanistic step: cage-passing growth forming cross-linked multi-core PAHs with graphene-like structure. This mechanistic concept proves general on other cage-based molecule sieves. This preliminary work would provide a versatile means to decipher the key mechanistic step of molecular mass growth for PAHs involved in catalysis and combustion chemistry.

8.
IUCrJ ; 6(Pt 4): 603-609, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31316804

ABSTRACT

This work presents a systematic study of the conducting and optical properties of a family of aromatic di-imides reported recently and discusses the influences of side-chain substitution on the reorganization energies, crystal packing, electronic couplings and charge injection barrier of 4,5,9,10-pyrenedi-imide (PyDI). Quantum-chemical calculations combined with the Marcus-Hush electron transfer theory revealed that the introduction of a side chain into 4,5,9,10-pyrenedi-imide increases intermolecular steric interactions and hinders close intermolecular π-π stacking, which results in weak electronic couplings and finally causes lower intrinsic hole and electron mobility in t-C5-PyDI (µh = 0.004 cm2 V-1 s-1 and µe = 0.00003 cm2 V-1 s-1) than in the C5-PyDI crystal (µh = 0.16 cm2 V-1 s-1 and µe = 0.08 cm2 V-1 s-1). Furthermore, electronic spectra of C5-PyDI were simulated and time-dependent density functional theory calculation results showed that the predicted fluorescence maximum of t-C5-PyDI, corresponding to an S 1→S 0 transition process, is located at 485 nm, which is close to the experimental value (480 nm).

9.
Phys Chem Chem Phys ; 21(14): 7447-7453, 2019 Apr 03.
Article in English | MEDLINE | ID: mdl-30892324

ABSTRACT

Two-dimensional (2D) metal-semiconductor junctions have shown significant potential for nanoelectronic and optoelectronic applications. Herein, the structural and electronic properties of a germanium monosulfide/graphene (GeS/G) van der Waals (vdW) heterostructure were explored using first-principles calculations. It was discovered that the structural rigidity and mechanical anisotropy of GeS could be significantly improved by loading graphene. In addition, the intrinsic characteristics of the atomic layer GeS and graphene were well preserved, and the formation of a p-type Schottky contact in the equilibrium state was demonstrated; moreover, the Schottky barrier height of the interface was sensitive to the external condition and could be reduced to zero via applying normal strain or a perpendicular electric field. These insightful results pave the way for experimental research and the design of other 2D nanomaterial-based electronic and optoelectronic devices.

10.
Adv Sci (Weinh) ; 5(9): 1800748, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30250807

ABSTRACT

Plasmonic metal nanostructures have been widely used to enhance the upconversion efficiency of the near-infrared (NIR) photons into the visible region via the localized surface plasmon resonance (LSPR) effect. However, the direct utilization of low-cost nonmetallic semiconductors to both concentrate and transfer the NIR-plasmonic energy in the upconversion system remains a significant challenge. Here, a fascinating process of NIR-plasmonic energy upconversion in Yb3+/Er3+-doped NaYF4 nanoparticles (NaYF4:Yb-Er NPs)/W18O49 nanowires (NWs) heterostructures, which can selectively enhance the upconversion luminescence by two orders of magnitude, is demonstrated. Combined with theoretical calculations, it is proposed that the NIR-excited LSPR of W18O49 NWs is the primary reason for the enhanced upconversion luminescence of NaYF4:Yb-Er NPs. Meanwhile, this plasmon-enhanced upconversion luminescence can be partly absorbed by the W18O49 NWs to re-excite its higher energy LSPR, thus leading to the selective enhancement of upconversion luminescence for the NaYF4:Yb-Er/W18O49 heterostructures. More importantly, based on this process of plasmonic energy transfer, an NIR-driven catalyst of NaYF4:Yb-Er NPs@W18O49 NWs quasi-core/shell heterostructure, which exhibits a ≈35-fold increase in the catalytic H2 evolution from ammonia borane (BH3NH3) is designed and synthesized. This work provides insight on the development of nonmetallic plasmon-sensitized optical materials that can potentially be applied in photocatalysis, optoelectronic, and photovoltaic devices.

11.
Adv Mater ; 30(9)2018 Mar.
Article in English | MEDLINE | ID: mdl-29327486

ABSTRACT

The ultrafast transfer of plasmon-induced hot electrons is considered an effective kinetics process to enhance the photoconversion efficiencies of semiconductors through strong localized surface plasmon resonance (LSPR) of plasmonic nanostructures. Although this classical sensitization approach is widely used in noble-metal-semiconductor systems, it remains unclear in nonmetallic plasmonic heterostructures. Here, by combining ultrafast transient absorption spectroscopy with theoretical simulations, IR-driven transfer of plasmon-induced hot electron in a nonmetallic branched heterostructure is demonstrated, which is fabricated through solvothermal growth of plasmonic W18 O49 nanowires (as branches) onto TiO2 electrospun nanofibers (as backbones). The ultrafast transfer of hot electron from the W18 O49 branches to the TiO2 backbones occurs within a timeframe on the order of 200 fs with very large rate constants ranging from 3.8 × 1012 to 5.5 × 1012 s-1 . Upon LSPR excitation by low-energy IR photons, the W18 O49 /TiO2 branched heterostructure exhibits obviously enhanced catalytic H2 generation from ammonia borane compared with that of W18 O49 nanowires. Further investigations by finely controlling experimental conditions unambiguously confirm that this plasmon-enhanced catalytic activity arises from the transfer of hot electron rather than from the photothermal effect.

12.
IUCrJ ; 4(Pt 5): 695-699, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28989724

ABSTRACT

Based on first-principles calculations, the relationship between molecular packing and charge-transport parameters has been investigated and analysed in detail. It is found that the crystal packing forces in the flexible organic molecule 4-(1,2,2-triphenylvinyl)-aniline salicylaldehyde hydrazone (A) can apparently overcome the dynamic intramolecular rotations and the intramolecular steric repulsion, effectively enhancing the molecular rigidity and decreasing the internal reorganization energy. The conducting properties of A have also been simulated within the framework of hopping models, and the calculation results show that the intrinsic electron mobility in A is much higher than the corresponding intrinsic hole mobility. These theoretical investigations provide guidance for the efficient and targeted control of the molecular packing and charge-transport properties of organic small-molecule semiconductors and conjugated polymeric materials.

13.
Angew Chem Int Ed Engl ; 56(31): 9039-9043, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28503894

ABSTRACT

In the past two decades, the reaction mechanism of C-C bond formation from either methanol or dimethyl ether (DME) in the methanol-to-hydrocarbons (MTH) process has been a highly controversial issue. Described here is the first observation of a surface methyleneoxy analogue, originating from the surface-activated DME, by in situ solid-state NMR spectroscopy, a species crucial to the first C-C bond formation in the MTH process. New insights into the first C-C bond formation were provided, thus suggesting DME/methanol activation and direct C-C bond formation by an interesting synergetic mechanism, involving C-H bond breakage and C-C bond coupling during the initial methanol reaction within the chemical environment of the zeolite catalyst.

14.
Sci Rep ; 7(1): 331, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28336952

ABSTRACT

We systematically studied the electronic structures and conducting properties of rubrene and its derivatives reported recently, and disscussed the influences of electron-withdrawing groups and chemical oxidation on the reorganization energies, crystal packing, electronic couplings, and charge injection barrier of rubrene. Hirshfeld surface analysis and quantum-chemical calculations revealed that the introduction of CF3 groups into rubrene decreases the H···H repulsive interaction and increases intermolecular F···H/H···F attractive interactions, which resulted in the tight packing arrangement and the increase of the electronic couplings, and finally cause the higer intrinsic hole-mobility in bis(trifluoromethyl)-dimethyl-rubrene crystal (µh = 19.2 cm2 V-1 s-1) than in rubrene crystal (µh = 15.8 cm2 V-1 s-1). In comparison, chemical oxidation reduces charge-carrier mobility of rubrene crystal by 2~4 orders of magnitude and increased the hole and electron injection barrier, which partly explains the rubrene-based field-effect transistor performance degrades upon exposure to air. Furthermore, we also discussed the influence of structural parameters of carbon nanotube (CNT) electrode on charge injection process, which suggests that the regulation of CNT diameters and increasing in thickness is an effective strategy to optimize CNT work functions and improve n-type OFET performances based on these organic materials.

15.
Adv Mater ; 29(18)2017 May.
Article in English | MEDLINE | ID: mdl-28262995

ABSTRACT

Ultrabroad-spectrum absorption and highly efficient generation of available charge carriers are two essential requirements for promising semiconductor-based photocatalysts, towards achieving the ultimate goal of solar-to-fuel conversion. Here, a fascinating nonmetal plasmonic Z-scheme photocatalyst with the W18 O49 /g-C3 N4 heterostructure is reported, which can effectively harvest photon energies spanning from the UV to the nearinfrared region and simultaneously possesses improved charge-carrier dynamics to boost the generation of long-lived active electrons for the photocatalytic reduction of protons into H2 . By combining with theoretical simulations, a unique synergistic photocatalysis effect between the semiconductive Z-scheme charge-carrier separation and metal-like localized-surface-plasmon-resonance-induced "hot electrons" injection process is demonstrated within this binary heterostructure.

16.
Sci Rep ; 6: 35555, 2016 10 19.
Article in English | MEDLINE | ID: mdl-27759050

ABSTRACT

The anisotropic hole and electron mobilities in N,N'-3,4,9,10-perylenediimide-1,7-phenoxy (PDIB-2OPh) and N,N'-3,4,9,10-perylenediimide (PDIB) were theoretically predicted using the Marcus-Hush theory. The substituent effect of phenoxy on their mobility rates, absorption spectra, electron affinities, and ionization potentials was explored. By comparing the simulated hole mobility in PDIB and PDIB-2OPh, it is found that the phenoxy rings act as spacers between adjacent stacking columns in the phenoxy-substituted derivatives. The increasement of the number of benzene oxygen groups leads to the absorption spectra red-shift of these molecular systems. This coincides with their change tendency of the adiabatic ionization potentials, vertical ionization potentials. However, the calculated adiabatic electron affinities and vertical electron affinities of N,N'-butyl-3,4,9,10-perylenediimide-1,6,7,12-phenoxy (PDIB-4OPh) are larger than those of PDIB;OPh. The steric effect in PDIB-4OPh is expected to cause space reversal and thus to changes in the properties of the molecule.

17.
J Mol Model ; 22(8): 182, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27421256

ABSTRACT

Fused ring oligothiophenes and their derivatives, as active organic semiconductors, are widely used in electronic devices. The influence of molecular conjunction length on reorganization energy, electronic coupling and charge mobility of two fused ring oligothiophenes are investigated theoretically. The charge mobility of 2, 5-di(thiophen-2-yl)thieno [3, 2-b]thiophene (T-T(2)-T) with longer molecular conjunction length is 0.226 cm(2)V(-1)s(-1), which is nearly 3 times larger than that of 2, 2-bithieno[3, 2-b]thiophene (T(2)-T(2)) as 0.085 cm(2)V(-1)s(-1). The investigation will provide a new perspective to design high mobility organic semiconductors.


Subject(s)
Models, Molecular , Semiconductors , Thiophenes/chemistry , Molecular Structure
18.
Phys Chem Chem Phys ; 17(38): 25463-70, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26365519

ABSTRACT

In this study, the electron-transfer properties of alkynylated indenofluorene-diones with various substituents (SiMe3, SiPr3, and SiPh3) that function as n-type organic semiconductors were comparatively investigated at the first-principles DFT level based on the Marcus-Hush theory. The reorganization energies are calculated by the adiabatic potential-energy surface method, and the coupling terms are evaluated through a direct adiabatic model. The maximum value of the electron-transfer mobility of SiPr3 is 0.485 cm(2) V(-1) s(-1), which appears at the orientation angle of the conducting channel on the reference plane a-b near to 172°/352°. The predicted maximum electron mobility value of SiPr3 is nearly 26 times larger than that of SiPh3. This may be attributed to the largest number of intermolecular π-π interactions. In addition, the mobilities in all three crystals show remarkable anisotropic behavior. The calculated results indicate that SiPr3 could be an ideal candidate as a high-performance n-type organic semiconductor material. Our investigations not only give us an opportunity to completely understand the charge transport mechanisms, but also provide guidelines for designing materials for electronic applications.

19.
Nat Protoc ; 10(4): 632-42, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25811897

ABSTRACT

This protocol is intended to provide chemists and physicists with a tool for predicting the charge carrier mobilities of π-stacked systems such as organic semiconductors and the DNA double helix. An experimentally determined crystal structure is required as a starting point. The simulation involves the following operations: (i) searching the crystal structure; (ii) selecting molecular monomers and dimers from the crystal structure; (iii) using density function theory (DFT) calculations to determine electronic coupling for dimers; (iv) using DFT calculations to determine self-reorganization energy of monomers; and (v) using a numerical calculation to determine the charge carrier mobility. For a single crystal structure consisting of medium-sized molecules, this protocol can be completed in ∼4 h. We have selected two case studies (a rubrene crystal and a DNA segment) as examples of how this procedure can be used.


Subject(s)
DNA/chemistry , Models, Theoretical , Naphthacenes/chemistry , Semiconductors , Computer Simulation , Crystallography, X-Ray , Models, Molecular
20.
Nanoscale ; 7(9): 4149-55, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25665734

ABSTRACT

We developed a novel kind of branched heterostructure by hydrothermal growth of ZnSnO3 nanostructures on TiO2 electrospun nanofibers, and demonstrated its enhanced ability to sense humidity through a sequential cactus-inspired tailoring of the ZnSnO3 nanostructures. Combining these results with first-principles calculations, it is deduced that the concentration of water molecules adsorbed on the ZnSnO3/TiO2 heterojunction surface can be increased by reducing the surface potential barrier. Meanwhile, the bioinspired ZnSnO3 nanoneedles, which form branches on the heterostructures, can further boost their adsorption abilities for water molecules via a water collection process. The adsorbed water molecules on the tips of the ZnSnO3 nanoneedles desorb easily in a low-humidity environment due to the small area of the tips (1.5-2.5 nm). Thus, the optimal ZnSnO3/TiO2 heterostructure exhibits response and recovery times of ∼2.5 s and ∼3 s, respectively. Its good sensitivity may enable it to detect tiny fluctuations in moisture and relative humidity that may surround any high-precision instrument.

SELECTION OF CITATIONS
SEARCH DETAIL