Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Stem Cell Reports ; 19(8): 1122-1136, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39094561

ABSTRACT

Reactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.


Subject(s)
Astrocytes , Coculture Techniques , Pluripotent Stem Cells , Astrocytes/metabolism , Humans , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Complement C3/metabolism , Cell Differentiation , Neurons/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Phagocytosis , Blood-Brain Barrier/metabolism , Glaucoma/pathology , Glaucoma/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Calcium/metabolism , Phenotype
2.
Proc Natl Acad Sci U S A ; 121(25): e2317285121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870053

ABSTRACT

Human pluripotent stem cell (hPSC)-derived retinal organoids are three-dimensional cellular aggregates that differentiate and self-organize to closely mimic the spatial and temporal patterning of the developing human retina. Retinal organoid models serve as reliable tools for studying human retinogenesis, yet limitations in the efficiency and reproducibility of current retinal organoid differentiation protocols have reduced the use of these models for more high-throughput applications such as disease modeling and drug screening. To address these shortcomings, the current study aimed to standardize prior differentiation protocols to yield a highly reproducible and efficient method for generating retinal organoids. Results demonstrated that through regulation of organoid size and shape using quick reaggregation methods, retinal organoids were highly reproducible compared to more traditional methods. Additionally, the timed activation of BMP signaling within developing cells generated pure populations of retinal organoids at 100% efficiency from multiple widely used cell lines, with the default forebrain fate resulting from the inhibition of BMP signaling. Furthermore, given the ability to direct retinal or forebrain fates at complete purity, mRNA-seq analyses were then utilized to identify some of the earliest transcriptional changes that occur during the specification of these two lineages from a common progenitor. These improved methods also yielded retinal organoids with expedited differentiation timelines when compared to traditional methods. Taken together, the results of this study demonstrate the development of a highly reproducible and minimally variable method for generating retinal organoids suitable for analyzing the earliest stages of human retinal cell fate specification.


Subject(s)
Cell Differentiation , Organoids , Pluripotent Stem Cells , Retina , Humans , Organoids/cytology , Organoids/metabolism , Retina/cytology , Retina/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Signal Transduction , Reproducibility of Results , Bone Morphogenetic Proteins/metabolism
3.
Sci Rep ; 13(1): 13827, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620502

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of Aß plaques and neurofibrillary tangles, resulting in synaptic loss and neurodegeneration. The retina is an extension of the central nervous system within the eye, sharing many structural similarities with the brain, and previous studies have observed AD-related phenotypes within the retina. Three-dimensional retinal organoids differentiated from human pluripotent stem cells (hPSCs) can effectively model some of the earliest manifestations of disease states, yet early AD-associated phenotypes have not yet been examined. Thus, the current study focused upon the differentiation of hPSCs into retinal organoids for the analysis of early AD-associated alterations. Results demonstrated the robust differentiation of retinal organoids from both familial AD and unaffected control cell lines, with familial AD retinal organoids exhibiting a significant increase in the Aß42:Aß40 ratio as well as phosphorylated Tau protein, characteristic of AD pathology. Further, transcriptional analyses demonstrated the differential expression of many genes and cellular pathways, including those associated with synaptic dysfunction. Taken together, the current study demonstrates the ability of retinal organoids to serve as a powerful model for the identification of some of the earliest retinal alterations associated with AD.


Subject(s)
Alzheimer Disease , Humans , Organoids , Central Nervous System , Phenotype , Retina
4.
Handb Exp Pharmacol ; 281: 83-102, 2023.
Article in English | MEDLINE | ID: mdl-36907969

ABSTRACT

The ability to derive retinal ganglion cells (RGCs) from human pluripotent stem cells (hPSCs) provides an extraordinary opportunity to study the development of RGCs as well as cellular mechanisms underlying their degeneration in optic neuropathies. In the past several years, multiple approaches have been established that allow for the generation of RGCs from hPSCs, with these methods greatly improved in more recent studies to yield mature RGCs that more faithfully recapitulate phenotypes within the eye. Nevertheless, numerous differences still remain between hPSC-RGCs and those found within the human eye, with these differences likely explained at least in part due to the environment in which hPSC-RGCs are grown. With the ultimate goal of generating hPSC-RGCs that most closely resemble those within the retina for proper studies of retinal development, disease modeling, as well as cellular replacement, we review within this manuscript the current effective approaches for the differentiation of hPSC-RGCs, as well as how they have been applied for the investigation of RGC neurodegenerative diseases such as glaucoma. Furthermore, we provide our opinions on the characteristics of RGCs necessary for their use as effective in vitro disease models and importantly, how these current systems should be improved to more accurately reflect disease states. The establishment of characteristics in differentiated hPSC-RGCs that more effectively mimic RGCs within the retina will not only enable their use as effective models of RGC development, but will also create a better disease model for the identification of mechanisms underlying the neurodegeneration of RGCs in disease states such as glaucoma, further facilitating the development of therapeutic approaches to rescue RGCs from degeneration in disease states.


Subject(s)
Glaucoma , Pluripotent Stem Cells , Humans , Retinal Ganglion Cells , Retina , Cell Differentiation , Glaucoma/therapy
5.
Commun Biol ; 6(1): 218, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828933

ABSTRACT

Mitochondrial dysfunctions are widely afflicted in central nervous system (CNS) disorders with minimal understanding on how to improve mitochondrial homeostasis to promote neuroprotection. Here we have used human stem cell differentiated retinal ganglion cells (hRGCs) of the CNS, which are highly sensitive towards mitochondrial dysfunctions due to their unique structure and function, to identify mechanisms for improving mitochondrial quality control (MQC). We show that hRGCs are efficient in maintaining mitochondrial homeostasis through rapid degradation and biogenesis of mitochondria under acute damage. Using a glaucomatous Optineurin mutant (E50K) stem cell line, we show that at basal level mutant hRGCs possess less mitochondrial mass and suffer mitochondrial swelling due to excess ATP production load. Activation of mitochondrial biogenesis through pharmacological inhibition of the Tank binding kinase 1 (TBK1) restores energy homeostasis, mitigates mitochondrial swelling with neuroprotection against acute mitochondrial damage for glaucomatous E50K hRGCs, revealing a novel neuroprotection mechanism.


Subject(s)
Glaucoma , Pluripotent Stem Cells , Humans , Retinal Ganglion Cells , Organelle Biogenesis , Neuroprotection , Mitochondria/metabolism , Pluripotent Stem Cells/metabolism
6.
bioRxiv ; 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36711831

ABSTRACT

Autophagy dysfunction has been associated with several neurodegenerative diseases including glaucoma, characterized by the degeneration of retinal ganglion cells (RGCs). However, the mechanisms by which autophagy dysfunction promotes RGC damage remain unclear. Here, we hypothesized that perturbation of the autophagy pathway results in increased autophagic demand, thereby downregulating signaling through mammalian target of rapamycin complex 1 (mTORC1), a negative regulator of autophagy, contributing to the degeneration of RGCs. We identified an impairment of autophagic-lysosomal degradation and decreased mTORC1 signaling via activation of the stress sensor adenosine monophosphate-activated protein kinase (AMPK), along with subsequent neurodegeneration in RGCs differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated variant of Optineurin (OPTN-E50K). Similarly, the microbead occlusion model of glaucoma resulting in ocular hypertension also exhibited autophagy disruption and mTORC1 downregulation. Pharmacological inhibition of mTORC1 in hPSC-derived RGCs recapitulated disease-related neurodegenerative phenotypes in otherwise healthy RGCs, while the mTOR-independent induction of autophagy reduced protein accumulation and restored neurite outgrowth in diseased OPTN-E50K RGCs. Taken together, these results highlight an important balance between autophagy and mTORC1 signaling essential for RGC homeostasis, while disruption to these pathways contributes to neurodegenerative features in glaucoma, providing a potential therapeutic target to prevent neurodegeneration.

7.
Front Microbiol ; 13: 896588, 2022.
Article in English | MEDLINE | ID: mdl-36406412

ABSTRACT

Hepatitis C virus (HCV) NS3/4A protease is an attractive target for direct-acting antiviral agents. Real-time tracking of the NS3/4A protease distribution and activity is useful for clinical diagnosis and disease management. However, no approach has been developed that can systemically detect NS3/4A protease activity or distribution. We designed a protease-activatable retention probe for tracking HCV NS3/4A protease activity via positron emission topography (PET) imaging. A cell-penetrating probe was designed that consisted of a cell-penetrating Tat peptide, HCV NS3/4A protease substrate, and a hydrophilic domain. The probe was labeled by fluorescein isothiocyanate (FITC) and 124I in the hydrophilic domain to form a TAT-ΔNS3/4A-124I-FITC probe. Upon cleavage at NS3/4A substrate, the non-penetrating hydrophilic domain is released and accumulated in the cytoplasm allowing PET or optical imaging. The TAT-ΔNS3/4A-FITC probe selectively accumulated in NS3/4A-expressing HCC36 (NS3/4A-HCC36) cells/tumors and HCV-infected HCC36 cells. PET imaging showed that the TAT-ΔNS3/4A-124I-FITC probe selectively accumulated in the NS3/4A-HCC36 xenograft tumors and liver-implanted NS3/4A-HCC36 tumors, but not in the control HCC36 tumors. The TAT-ΔNS3/4A-124I-FITC probe can be used to represent NS3/4 protease activity and distribution via a clinical PET imaging system allowing. This strategy may be extended to detect any cellular protease activity for optimization the protease-based therapies.

8.
Stem Cell Reports ; 17(7): 1636-1649, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35714595

ABSTRACT

Although the degeneration of retinal ganglion cells (RGCs) is a primary characteristic of glaucoma, astrocytes also contribute to their neurodegeneration in disease states. Although studies often explore cell-autonomous aspects of RGC neurodegeneration, a more comprehensive model of glaucoma should take into consideration interactions between astrocytes and RGCs. To explore this concept, RGCs and astrocytes were differentiated from human pluripotent stem cells (hPSCs) with a glaucoma-associated OPTN(E50K) mutation along with corresponding isogenic controls. Initial results indicated significant changes in OPTN(E50K) astrocytes, including evidence of autophagy dysfunction. Subsequently, co-culture experiments demonstrated that OPTN(E50K) astrocytes led to neurodegenerative properties in otherwise healthy RGCs, while healthy astrocytes rescued some neurodegenerative features in OPTN(E50K) RGCs. These results are the first to identify disease phenotypes in OPTN(E50K) astrocytes, including how their modulation of RGCs is affected. Moreover, these results support the concept that astrocytes could offer a promising target for therapeutic intervention in glaucoma.


Subject(s)
Glaucoma , Pluripotent Stem Cells , Astrocytes , Cell Cycle Proteins/genetics , Glaucoma/genetics , Humans , Membrane Transport Proteins/genetics , Phenotype , Retinal Ganglion Cells
9.
Stem Cell Reports ; 16(9): 2228-2241, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34115986

ABSTRACT

The development of the visual system involves the coordination of spatial and temporal events to specify the organization of varied cell types, including the elongation of axons from retinal ganglion cells (RGCs) to post-synaptic targets in the brain. Retinal organoids recapitulate many features of retinal development, yet have lacked downstream targets into which RGC axons extend, limiting the ability to model projections of the human visual system. To address these issues, retinal organoids were generated and organized into an in vitro assembloid model of the visual system with cortical and thalamic organoids. RGCs responded to environmental cues and extended axons deep into assembloids, modeling the projections of the visual system. In addition, RGC survival was enhanced in long-term assembloids, overcoming prior limitations of retinal organoids in which RGCs are lost. Overall, these approaches will facilitate studies of human visual system development, as well as diseases or injuries to this critical pathway.


Subject(s)
Cell Differentiation , Organoids/cytology , Organoids/metabolism , Pluripotent Stem Cells/cytology , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/physiology , Animals , Axons/physiology , Biomarkers , Cell Culture Techniques, Three Dimensional/methods , Cell Physiological Phenomena , Cells, Cultured , Fluorescent Antibody Technique , Genes, Reporter , Humans , Mice , Neuronal Outgrowth , Synapses/metabolism , Visual Pathways
10.
Stem Cell Reports ; 15(1): 52-66, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32531194

ABSTRACT

Retinal ganglion cells (RGCs) serve as the connection between the eye and the brain, with this connection disrupted in glaucoma. Numerous cellular mechanisms have been associated with glaucomatous neurodegeneration, and useful cellular models of glaucoma allow for the precise analysis of degenerative phenotypes. Human pluripotent stem cells (hPSCs) serve as powerful tools for studying human disease, particularly cellular mechanisms underlying neurodegeneration. Thus, efforts focused upon hPSCs with an E50K mutation in the Optineurin (OPTN) gene, a leading cause of inherited forms of glaucoma. CRISPR/Cas9 gene editing introduced the OPTN(E50K) mutation into existing lines of hPSCs, as well as generating isogenic controls from patient-derived lines. RGCs differentiated from OPTN(E50K) hPSCs exhibited numerous neurodegenerative deficits, including neurite retraction, autophagy dysfunction, apoptosis, and increased excitability. These results demonstrate the utility of OPTN(E50K) RGCs as an in vitro model of neurodegeneration, with the opportunity to develop novel therapeutic approaches for glaucoma.


Subject(s)
Cell Cycle Proteins/genetics , Glaucoma/genetics , Membrane Transport Proteins/genetics , Mutation/genetics , Nerve Degeneration/pathology , Organoids/pathology , Retinal Ganglion Cells/pathology , Animals , Apoptosis , Autophagy , CRISPR-Cas Systems/genetics , Cell Differentiation/genetics , Disease Models, Animal , Down-Regulation/genetics , Gene Editing , Humans , Microtubule-Associated Proteins/metabolism , Phenotype , Sequence Analysis, RNA
11.
Methods Cell Biol ; 159: 279-302, 2020.
Article in English | MEDLINE | ID: mdl-32586447

ABSTRACT

Human pluripotent stem cells (hPSCs) possess the remarkable ability to differentiate into any cell type of the body, including those of the retina. Through the differentiation of these cells as retinal organoids, it is now possible to model the spatial and temporal development of the human retina using hPSCs, in which retinal progenitor cells produce the entire repertoire of retinal cells, first differentiating into retinal ganglion cells and ending with mature photoreceptors, bipolar cells, and Müller glia. Importantly, retinal organoids self-assemble into laminated structures that recapitulate the layering of the human retina with a retinal ganglion cell layer lining the inner layer and a distinctly separate photoreceptor layer occupying the outer layers. This organoid technology has provided access to human tissue for developmental and disease modeling, as well as translational applications such as high throughput drug screening and cell replacement therapies. However, the differentiation of retinal organoids does require some expertise and multiple strategies produce inconsistent results. Here, we describe in detail a well-established and relatively simple method for the generation of retinal organoids.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation , Organoids/cytology , Pluripotent Stem Cells/cytology , Retina/cytology , Cell Aggregation , Humans
12.
Stem Cell Reports ; 13(5): 906-923, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31668851

ABSTRACT

X-linked juvenile retinoschisis (XLRS), linked to mutations in the RS1 gene, is a degenerative retinopathy with a retinal splitting phenotype. We generated human induced pluripotent stem cells (hiPSCs) from patients to study XLRS in a 3D retinal organoid in vitro differentiation system. This model recapitulates key features of XLRS including retinal splitting, defective retinoschisin production, outer-segment defects, abnormal paxillin turnover, and impaired ER-Golgi transportation. RS1 mutation also affects the development of photoreceptor sensory cilia and results in altered expression of other retinopathy-associated genes. CRISPR/Cas9 correction of the disease-associated C625T mutation normalizes the splitting phenotype, outer-segment defects, paxillin dynamics, ciliary marker expression, and transcriptome profiles. Likewise, mutating RS1 in control hiPSCs produces the disease-associated phenotypes. Finally, we show that the C625T mutation can be repaired precisely and efficiently using a base-editing approach. Taken together, our data establish 3D organoids as a valid disease model.


Subject(s)
Organoids/pathology , Retina/pathology , Retinoschisis/pathology , Cells, Cultured , Eye Proteins/genetics , Gene Editing , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Organoids/metabolism , Point Mutation , Retina/metabolism , Retinoschisis/genetics , Retinoschisis/therapy
14.
Stem Cell Res ; 29: 152-156, 2018 05.
Article in English | MEDLINE | ID: mdl-29674172

ABSTRACT

X-linked juvenile retinoschisis (XLRS) is a hereditary retinal dystrophy manifested as splitting of anatomical layers of retina. In this report, we generated a patient-specific induced pluripotent stem cell (iPSC) line, TVGH-iPSC-013-05, from the peripheral blood mononuclear cells of a male patient with XLRS by using the Sendai-virus delivery system. We believe that XLRS patient-specific iPSCs provide a powerful in vitro model for evaluating the pathological phenotypes of the disease.


Subject(s)
Cellular Reprogramming Techniques , Induced Pluripotent Stem Cells , Retinoschisis , Adolescent , Cell Line , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Male , Retinoschisis/genetics , Retinoschisis/metabolism , Retinoschisis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL