Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38370789

ABSTRACT

Homologous recombination (HR) deficiency enhances sensitivity to DNA damaging agents commonly used to treat cancer. In HR-proficient cancers, metabolic mechanisms driving response or resistance to DNA damaging agents remain unclear. Here we identified that depletion of alpha-ketoglutarate (αKG) sensitizes HR-proficient cells to DNA damaging agents by metabolic regulation of histone acetylation. αKG is required for the activity of αKG-dependent dioxygenases (αKGDDs), and prior work has shown that changes in αKGDD affect demethylases. Using a targeted CRISPR knockout library consisting of 64 αKGDDs, we discovered that Trimethyllysine Hydroxylase Epsilon (TMLHE), the first and rate-limiting enzyme in de novo carnitine synthesis, is necessary for proliferation of HR-proficient cells in the presence of DNA damaging agents. Unexpectedly, αKG-mediated TMLHE-dependent carnitine synthesis was required for histone acetylation, while histone methylation was affected but dispensable. The increase in histone acetylation via αKG-dependent carnitine synthesis promoted HR-mediated DNA repair through site- and substrate-specific histone acetylation. These data demonstrate for the first time that HR-proficiency is mediated through αKG directly influencing histone acetylation via carnitine synthesis and provide a metabolic avenue to induce HR-deficiency and sensitivity to DNA damaging agents.

2.
bioRxiv ; 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37961201

ABSTRACT

DNA damage and cellular metabolism are intricately linked with bidirectional feedback. Two of the main effectors of the DNA damage response and control of cellular metabolism are ATR and mTORC1, respectively. Prior work has placed ATR upstream of mTORC1 during replication stress, yet the direct mechanism for how mTORC1 is activated in this context remain unclear. We previously published that p16-low cells have mTORC1 hyperactivation, which in part promotes their proliferation. Using this model, we found that ATR, but not ATM, is upstream of mTORC1 activation via de novo cholesterol synthesis and is associated with increased lanosterol synthase (LSS). Indeed, p16-low cells showed increased cholesterol abundance. Additionally, knockdown of either ATR or LSS decreased mTORC1 activity. Decreased mTORC1 activity due to ATR knockdown was rescued by cholesterol supplementation. Finally, using both LSS inhibitors and multiple FDA-approved de novo cholesterol synthesis inhibitors, we found that the de novo cholesterol biosynthesis pathway is a metabolic vulnerability of p16-low cells. Together, our data provide new evidence coupling the DNA damage response and cholesterol metabolism and demonstrate the feasibility of using FDA-approved cholesterol-lowering drugs in tumors with loss of p16.

3.
J Cell Biol ; 222(1)2023 01 02.
Article in English | MEDLINE | ID: mdl-36399181

ABSTRACT

Macropinocytosis is a nonspecific endocytic process that may enhance cancer cell survival under nutrient-poor conditions. Ataxia-Telangiectasia mutated (ATM) is a tumor suppressor that has been previously shown to play a role in cellular metabolic reprogramming. We report that the suppression of ATM increases macropinocytosis to promote cancer cell survival in nutrient-poor conditions. Combined inhibition of ATM and macropinocytosis suppressed proliferation and induced cell death both in vitro and in vivo. Supplementation of ATM-inhibited cells with amino acids, branched-chain amino acids (BCAAs) in particular, abrogated macropinocytosis. Analysis of ATM-inhibited cells in vitro demonstrated increased BCAA uptake, and metabolomics of ascites and interstitial fluid from tumors indicated decreased BCAAs in the microenvironment of ATM-inhibited tumors. These data reveal a novel basis of ATM-mediated tumor suppression whereby loss of ATM stimulates protumorigenic uptake of nutrients in part via macropinocytosis to promote cancer cell survival and reveal a potential metabolic vulnerability of ATM-inhibited cells.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Neoplasms , Pinocytosis , Humans , Adaptation, Physiological , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cellular Reprogramming , Neoplasms/metabolism , Tumor Microenvironment , Amino Acids, Branched-Chain/metabolism , Metabolomics , Animals , Mice , Cell Line, Tumor
4.
ACS Med Chem Lett ; 2(11): 814-817, 2011 Nov 10.
Article in English | MEDLINE | ID: mdl-22247787

ABSTRACT

Ionizing radiation triggers mitochondrial overproduction of H(2)O(2) with concomitant induction of intrinsic apoptosis, whereby clearance of H(2)O(2) upon overexpression of mitochondrial catalase increases radioresistance in vitro and in vivo. As an alternative to gene therapy, we tested the potential of Mn((III))-porphyrin complexes to clear mitochondrial H(2)O(2). We report that triphenyl-[(2E)-2-[4-[(1Z,4Z,9Z,15Z)-10,15,20-tris(4-aminophenyl)-21,23-dihydroporphyrin-5-yl]phenyl]iminoethyl]phosphonium-Mn((III)) compartmentalizes preferentially into mitochondria of mouse embryonic cells, reacts with H(2)O(2), impedes γ-ray-induced mitochondrial apoptosis, and increases the survival of mice exposed to whole body irradiation with γ-rays.

SELECTION OF CITATIONS
SEARCH DETAIL