Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
ACS Nanosci Au ; 3(6): 441-450, 2023 Dec 20.
Article En | MEDLINE | ID: mdl-38144700

Chemical synthesis is a compelling alternative to top-down fabrication for controlling the size, shape, and composition of two-dimensional (2D) crystals. Precision tuning of the 2D crystal structure has broad implications for the discovery of new phenomena and the reliable implementation of these materials in optoelectronic, photovoltaic, and quantum devices. However, precise and predictable manipulation of the edge structure in 2D crystals through gas-phase synthesis is still a formidable challenge. Here, we demonstrate a salt-assisted low-pressure chemical vapor deposition method that enables tuning W metal flux during growth of 2D WSe2 monolayers and, thereby, direct control of their edge structure and optical properties. The degree of structural disorder in 2D WSe2 is a direct function of the W metal flux, which is controlled by adjusting the mass ratio of WO3 to NaCl. This edge disorder then couples to excitonic disorder, which manifests as broadened and spatially varying emission profiles. Our work links synthetic parameters with analyses of material morphology and optical properties to provide a unified understanding of intrinsic limits and opportunities in synthetic 2D materials.

3.
ACS Nano ; 17(8): 7241-7249, 2023 Apr 25.
Article En | MEDLINE | ID: mdl-37027786

Nitrogen-vacancy (NV) centers in nanodiamonds are a promising quantum communication system offering robust and discrete single photon emission, but a more thorough understanding of properties of the NV centers is critical for real world implementation in functional devices. The first step to understanding how factors such as surface, depth, and charge state affect NV center properties is to directly characterize these defects on the atomic scale. Here we use Angstrom-resolution scanning transmission electron microscopy (STEM) to identify a single NV center in a ∼4 nm natural nanodiamond through simultaneous acquisition of electron energy loss and energy dispersive X-ray spectra, which provide a characteristic NV center peak and a nitrogen peak, respectively. In addition, we identify NV centers in larger, ∼15 nm synthetic nanodiamonds, although without the single-defect resolution afforded by the lower background of the smaller natural nanodiamonds. We have further demonstrated the potential to directly position these technologically relevant defects at the atomic scale using the scanning electron beam to "herd" NV centers and nitrogen atoms across their host nanodiamonds.

4.
ACS Nano ; 16(9): 13969-13981, 2022 Sep 27.
Article En | MEDLINE | ID: mdl-36074972

Oxygen conductors and transporters are important to several consequential renewable energy technologies, including fuel cells and syngas production. Separately, monolayer transition-metal dichalcogenides (TMDs) have demonstrated significant promise for a range of applications, including quantum computing, advanced sensors, valleytronics, and next-generation optoelectronics. Here, we synthesize a few-nanometer-thick BixOySez compound that strongly resembles a rare R3m bismuth oxide (Bi2O3) phase and combine it with monolayer TMDs, which are highly sensitive to their environment. We use the resulting 2D heterostructure to study oxygen transport through BixOySez into the interlayer region, whereby the 2D material properties are modulated, finding extraordinarily fast diffusion near room temperature under laser exposure. The oxygen diffusion enables reversible and precise modification of the 2D material properties by controllably intercalating and deintercalating oxygen. Changes are spatially confined, enabling sub-micrometer features (e.g., pixels), and are long-term stable for more than 221 days. Our work suggests few-nanometer-thick BixOySez is a promising unexplored room-temperature oxygen transporter. Additionally, our findings suggest that the mechanism can be applied to other 2D materials as a generalized method to manipulate their properties with high precision and sub-micrometer spatial resolution.

5.
ACS Appl Mater Interfaces ; 14(7): 9504-9514, 2022 Feb 23.
Article En | MEDLINE | ID: mdl-35157419

Characterizing and manipulating the circular polarization of light is central to numerous emerging technologies, including spintronics and quantum computing. Separately, monolayer tungsten disulfide (WS2) is a versatile material that has demonstrated promise in a variety of applications, including single photon emitters and valleytronics. Here, we demonstrate a method to tune the photoluminescence (PL) intensity (factor of ×161), peak position (38.4 meV range), circular polarization (39.4% range), and valley polarization of a Bi2Se3-WS2 2D heterostructure using a low-power laser (0.762 µW) in ambient conditions. Changes are spatially confined to the laser spot, enabling submicrometer (814 nm) features, and are long-term stable (>334 days). PL and valley polarization changes can be controllably reversed through laser exposure in a vacuum, allowing the material to be erased and reused. Atmospheric experiments and first-principles calculations indicate oxygen diffusion modulates the exciton radiative vs nonradiative recombination pathways, where oxygen absorption leads to brightening and desorption to darkening.

6.
J Phys Chem C Nanomater Interfaces ; 125(29): 16041-16048, 2021 Jul 29.
Article En | MEDLINE | ID: mdl-34354792

The precise positioning of dopant atoms within bulk crystal lattices could enable novel applications in areas including solid-state sensing and quantum computation. Established scanning probe techniques are capable tools for the manipulation of surface atoms, but at a disadvantage due to their need to bring a physical tip into contact with the sample. This has prompted interest in electron-beam techniques, followed by the first proof-of-principle experiment of bismuth dopant manipulation in crystalline silicon. Here, we use first-principles modeling to discover a novel indirect exchange mechanism that allows electron impacts to non-destructively move dopants with atomic precision within the silicon lattice. However, this mechanism only works for the two heaviest group V donors with split-vacancy configurations, Bi and Sb. We verify our model by directly imaging these configurations for Bi and by demonstrating that the promising nuclear spin qubit Sb can be manipulated using a focused electron beam.

7.
RSC Adv ; 11(24): 14495-14503, 2021 Apr 15.
Article En | MEDLINE | ID: mdl-35423958

Cation-defective iron oxides have proven to be effective Li-ion charge-storage hosts in nonaqueous electrolytes, particularly when expressed in disordered, nanoscale forms such as aerogels. Replacing a fraction of Fe sites in ferrites with high-valent cations such as V5+ introduces cation-vacancy defects that increase Li-ion capacity. Herein, we show that compositional substitution with electroinactive Al3+ further increases Li-ion capacity by 30% when incorporated within a disordered VFe2Ox aerogel, as verified by electrochemical tests in a two-terminal Li half-cell. We use electroanalytical techniques to show that both Al-VFe2Ox and VFe2Ox aerogels exhibit many of the hallmarks of pseudocapacitive materials, including fast charge-discharge and surface-controlled charge-storage kinetics. These disordered, substituted ferrites also provide the high specific capacity expected from battery-type electrode materials, up to 130 mA h g-1 for Al-VFe2Ox. Our findings are discussed in the context of related Li-insertion hosts that blur the distinctions between battery-like and capacitor-like behavior.

8.
ACS Nano ; 12(9): 9051-9059, 2018 Sep 25.
Article En | MEDLINE | ID: mdl-30160468

The creation of nanomaterials requires simultaneous control of not only crystalline structure and composition but also crystal shape and size, or morphology, which can pose a significant synthetic challenge. Approaches to address this challenge include creating nanocrystals whose morphologies echo their underlying crystal structures, such as the growth of platelets of two-dimensional layered crystal structures, or conversely attempting to decouple the morphology from structure by converting a structure or composition after first creating crystals with a desired morphology. A particularly elegant example of this latter approach involves the topotactic conversion of a nanoparticle from one structure and composition to another, since the orientation relationship between the initial and final product allows the crystallinity and orientation to be maintained throughout the process. Here we report a mechanism for creating hollow nanostructures, illustrated via the decomposition of ß-FeOOH nanorods to nanocapsules of α-Fe2O3, γ-Fe2O3, Fe3O4, and FeO, depending on the reaction conditions, while retaining single-crystallinity and the outer nanorod morphology. Using in situ TEM, we demonstrate that the nanostructured morphology of the starting material allows kinetic trapping of metastable phases with a topotactic relationship to the final thermodynamically stable phase.

9.
ACS Nano ; 12(6): 5873-5879, 2018 Jun 26.
Article En | MEDLINE | ID: mdl-29750507

The ability to controllably position single atoms inside materials is key for the ultimate fabrication of devices with functionalities governed by atomic-scale properties. Single bismuth dopant atoms in silicon provide an ideal case study in view of proposals for single-dopant quantum bits. However, bismuth is the least soluble pnictogen in silicon, meaning that the dopant atoms tend to migrate out of position during sample growth. Here, we demonstrate epitaxial growth of thin silicon films doped with bismuth. We use atomic-resolution aberration-corrected imaging to view the as-grown dopant distribution and then to controllably position single dopants inside the film. Atomic-scale quantum-mechanical calculations corroborate the experimental findings. These results indicate that the scanning transmission electron microscope is of particular interest for assembling functional materials atom-by-atom because it offers both real-time monitoring and atom manipulation. We envision electron-beam manipulation of atoms inside materials as an achievable route to controllable assembly of structures of individual dopants.

10.
Nanotechnology ; 29(25): 255303, 2018 Jun 22.
Article En | MEDLINE | ID: mdl-29616980

Semiconductor fabrication is a mainstay of modern civilization, enabling the myriad applications and technologies that underpin everyday life. However, while sub-10 nanometer devices are already entering the mainstream, the end of the Moore's law roadmap still lacks tools capable of bulk semiconductor fabrication on sub-nanometer and atomic levels, with probe-based manipulation being explored as the only known pathway. Here we demonstrate that the atomic-sized focused beam of a scanning transmission electron microscope can be used to manipulate semiconductors such as Si on the atomic level, inducing growth of crystalline Si from the amorphous phase, reentrant amorphization, milling, and dopant front motion. These phenomena are visualized in real-time with atomic resolution. We further implement active feedback control based on real-time image analytics to automatically control the e-beam motion, enabling shape control and providing a pathway for atom-by-atom correction of fabricated structures in the near future. These observations open a new epoch for atom-by-atom manufacturing in bulk, the long-held dream of nanotechnology.

11.
Nanoscale ; 10(1): 260-267, 2017 Dec 21.
Article En | MEDLINE | ID: mdl-29210405

One-dimensional (1D) nanostructures are highly sought after, both for their novel electronic properties as well as for their improved functionality. However, due to their nanoscale dimensions, these properties are significantly affected by the environment in which they are embedded. In this paper, we report on the creation of 1D homo-endotaxial Si nanostructures, i.e. 1D Si nanostructures with a lattice structure that is uniquely different from the Si diamond lattice in which they are embedded. We use scanning tunneling microscopy and spectroscopy, scanning transmission electron microscopy, density functional theory, and conductive atomic force microscopy to elucidate their formation and properties. Depending on kinetic constraints during growth, they can be prepared as endotaxial 1D Si nanostructures completely embedded in crystalline Si, or underneath a stripe of amorphous Si containing a large concentration of Bi atoms. These homo-endotaxial 1D Si nanostructures have the potential to be useful components in nanoelectronic devices based on the technologically mature Si platform.

12.
Nat Commun ; 8: 15316, 2017 05 12.
Article En | MEDLINE | ID: mdl-28497788

High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolution the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.

13.
ACS Nano ; 8(6): 5441-8, 2014 Jun 24.
Article En | MEDLINE | ID: mdl-24818706

The well-known vapor-liquid-solid (VLS) mechanism results in high-purity, single-crystalline wires with few defects and controllable diameters, and is the method of choice for the growth of nanowires for a vast array of nanoelectronic devices. It is of utmost importance, therefore, to understand how such wires interact with metallic interconnects-an understanding which relies on comprehensive knowledge of the initial growth process, in which a crystalline wire is ejected from a metallic particle. Though ubiquitous, even in the case of single elemental nanowires the VLS mechanism is complicated by competing processes at multiple heterogeneous interfaces, and despite decades of study, there are still aspects of the mechanism which are not well understood. Recent breakthroughs in studying the mechanism and kinetics of VLS growth have been strongly aided by the use of in situ techniques, and would have been impossible through other means. As well as several systematic studies of nanowire growth, reports which focus on the role and the nature of the catalyst tip reveal that the stability of the droplet is a crucial factor in determining nanowire morphology and crystallinity. Additionally, a reverse of the VLS process dubbed solid-liquid-vapor (SLV) has been found to result in the formation of cavities, or "negative nanowires". Here, we present a series of heating studies conducted in situ in the transmission electron microscope (TEM), in which we observe the complete dissolution of metal oxide nanowires into the metal catalyst particles at their tips. We are able to consistently explain our observations using a solid-liquid-vapor (SLV) type mechanism in which both evaporation at the liquid-vapor interface and adhesion of the catalyst droplet to the substrate surface contribute to the overall rate.

...