Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 185(24): 4507-4525.e18, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36356582

ABSTRACT

The human pathogen Mycobacterium tuberculosis typically causes lung disease but can also disseminate to other tissues. We identified a M. tuberculosis (Mtb) outbreak presenting with unusually high rates of extrapulmonary dissemination and bone disease. We found that the causal strain carried an ancestral full-length version of the type VII-secreted effector EsxM rather than the truncated version present in other modern Mtb lineages. The ancestral EsxM variant exacerbated dissemination through enhancement of macrophage motility, increased egress of macrophages from established granulomas, and alterations in macrophage actin dynamics. Reconstitution of the ancestral version of EsxM in an attenuated modern strain of Mtb altered the migratory mode of infected macrophages, enhancing their motility. In a zebrafish model, full-length EsxM promoted bone disease. The presence of a derived nonsense variant in EsxM throughout the major Mtb lineages 2, 3, and 4 is consistent with a role for EsxM in regulating the extent of dissemination.


Subject(s)
Bone Diseases , Mycobacterium marinum , Mycobacterium tuberculosis , Tuberculosis , Animals , Humans , Zebrafish , Tuberculosis/microbiology , Macrophages/microbiology , Bacterial Proteins/genetics
2.
Immunity ; 55(5): 819-821, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35545030

ABSTRACT

In this issue of Immunity,Gideon et al. (2022) couple sophisticated single-cell analyses with detailed in vivo measurements of Mycobacterium tuberculosis granulomas to define the cellular and transcriptional properties of a successful host immune response during tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Granuloma , Humans
3.
Cell ; 184(7): 1757-1774.e14, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33761328

ABSTRACT

The central pathogen-immune interface in tuberculosis is the granuloma, a complex host immune structure that dictates infection trajectory and physiology. Granuloma macrophages undergo a dramatic transition in which entire epithelial modules are induced and define granuloma architecture. In tuberculosis, relatively little is known about the host signals that trigger this transition. Using the zebrafish-Mycobacterium marinum model, we identify the basis of granuloma macrophage transformation. Single-cell RNA-sequencing analysis of zebrafish granulomas and analysis of Mycobacterium tuberculosis-infected macaques reveal that, even in the presence of robust type 1 immune responses, countervailing type 2 signals associate with macrophage epithelialization. We find that type 2 immune signaling, mediated via stat6, is absolutely required for epithelialization and granuloma formation. In mixed chimeras, stat6 acts cell autonomously within macrophages, where it is required for epithelioid transformation and incorporation into necrotic granulomas. These findings establish the signaling pathway that produces the hallmark structure of mycobacterial infection.


Subject(s)
Granuloma/pathology , Immunity/physiology , Mycobacterium Infections, Nontuberculous/pathology , Animals , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Differentiation , Disease Models, Animal , Epithelioid Cells/cytology , Epithelioid Cells/immunology , Epithelioid Cells/metabolism , Granuloma/immunology , Granuloma/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Interferon-gamma/metabolism , Interleukin-12/metabolism , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium marinum/isolation & purification , Mycobacterium marinum/physiology , Necrosis , RNA, Guide, Kinetoplastida/metabolism , Receptors, Interleukin-4/antagonists & inhibitors , Receptors, Interleukin-4/genetics , Receptors, Interleukin-4/metabolism , STAT6 Transcription Factor/antagonists & inhibitors , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Signal Transduction , Zebrafish/growth & development , Zebrafish/metabolism
4.
Mol Biol Cell ; 31(26): 2948-2958, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33147115

ABSTRACT

Plants lack lamin proteins but contain a class of coiled-coil proteins that serve as analogues to form a laminal structure at the nuclear periphery. These nuclear matrix constituent proteins (NMCPs) play important roles in regulating nuclear morphology and are partitioned into two distinct groups. We investigated Arabidopsis NMCPs (called CRWNs) to study the interrelationship between the three NMCP1-type paralogues (CRWN1, 2, and 3) and the lone NMCP2-type paralogue, CRWN4. An examination of crwn mutants using protein immunoblots demonstrated that CRWN4 abundance depends on the presence of the NMCP1-type proteins, particularly CRWN1. The possibility that CRWN4 is coimported into the nucleus with nuclear localization signal (NLS)-bearing paralogues in the NMCP1-clade was discounted based on recovery of a crwn4-2 missense allele that disrupts a predicted NLS and lowers the abundance of CRWN4 in the nucleus. Further, a screen for mutations that suppress the effects of the crwn4-2 mutation led to the discovery of a missense allele, impa-1G146E, in one of the nine importin-α genes in the Arabidopsis genome. Our results indicate that the CRWN4 carries a functional NLS that interacts with canonic nuclear import machinery. Once imported, the level of CRWN4 within the nucleus is modulated by the abundance of NMCP1 proteins.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nuclear Matrix/metabolism , Nuclear Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Genes, Suppressor , Genetic Loci , Mutation/genetics , Nuclear Localization Signals/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...