Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
FEMS Microbiol Lett ; 368(19)2021 10 26.
Article En | MEDLINE | ID: mdl-34626182

The diverse bacterial communities in and around plants provide important benefits, such as protection against pathogens and cycling of essential minerals through decomposition of moribund plant biomass. Biodiverse fynbos landscapes generally have limited deadwood habitats due to the absence of large trees and frequent fire. In this study, we determined the effect of a fire disturbance on the bacterial communities in a fynbos landscape dominated by the shrub Protea repens using 16S ribosomal RNA amplicon sequencing. The bacterial community composition in newly formed fruiting structures (infructescences) and soil at a recently burnt site was different from that in an unburnt site. Bacteria inhabiting P. repens infructescences were similar to well-known taxa from decomposing wood and litter. This suggests a putative role for these aboveground plant structures as reservoirs for postfire decomposer bacteria. The results imply that inordinately frequent fires, which are commonplace in the Anthropocene, are a significant disturbance to bacterial communities and could affect the diversity of potentially important microbes from these landscapes.


Biodiversity , Fires , Proteaceae , Bacteria/genetics , Ecosystem , Plants/microbiology , Proteaceae/classification
2.
Antonie Van Leeuwenhoek ; 111(2): 209-226, 2018 Feb.
Article En | MEDLINE | ID: mdl-28936706

Actinomycete bacteria have previously been reported from reproductive structures (infructescences) of Protea (sugarbush/suikerbos) species, a niche dominated by fungi in the genera Knoxdaviesia and Sporothrix. It is probable that these taxa have symbiotic interactions, but a lack of knowledge regarding their diversity and general ecology precludes their study. We determined the diversity of actinomycetes within Protea repens inflorescence buds, open inflorescences, young and mature infructescences, and leaf litter surrounding these trees. Since the P. repens habitat is fire-prone, we also considered the potential of these bacteria to recolonise infructescences after fire. Actinomycetes were largely absent from flower buds and inflorescences but were consistently present in young and mature infructescences. Two Streptomyces spp. were the most consistent taxa recovered, one of which was also routinely isolated from leaf litter. Lower colonisation rates were evident in samples from a recently burnt site. One of the most consistent taxa isolated from older trees in the unburnt site was absent from this site. Our findings show that P. repens has a distinct community of actinomycetes dominated by a few species. These communities change over time and infructescence developmental stage, season and the age of the host population. Mature infructescences appear to be important sources of inoculum for some of the actinomycetes, seemingly disrupted by fire. Increased fire frequency limiting maturation of P. repens infructescences could thus impact future actinomycete colonisation in the landscape. Streptomyces spp. are likely to share this niche with the ophiostomatoid fungi, which merits further study regarding their interactions and mode of transfer.


Actinobacteria/classification , Biodiversity , Flowers/microbiology , Proteaceae/growth & development , Proteaceae/microbiology , Actinobacteria/isolation & purification , Colony Count, Microbial , Ecology , Symbiosis
3.
Front Microbiol ; 7: 1657, 2016.
Article En | MEDLINE | ID: mdl-27853450

Common saprophytic fungi are seldom present in Protea infructescences, which is strange given the abundance of mainly dead plant tissue in this moist protected environment. We hypothesized that the absence of common saprophytic fungi in Protea infructescences could be due to a special symbiosis where the presence of microbes producing antifungal compounds protect the infructescence. Using a culture based survey, employing selective media and in vitro antifungal assays, we isolated antibiotic producing actinomycetes from infructescences of Protea repens and P. neriifolia from two geographically separated areas. Isolates were grouped into three different morphological groups and appeared to be common in the Protea spp. examined in this study. The three groups were supported in 16S rRNA and multi-locus gene trees and were identified as potentially novel Streptomyces spp. All of the groups had antifungal activity in vitro. Streptomyces sp. Group 1 had inhibitory activity against all tested fungi and the active compound produced by this species was identified as fungichromin. Streptomyces spp. Groups 2 and 3 had lower inhibition against all tested fungi, while Group 3 showed limited inhibition against Candida albicans and Sporothrix isolates. The active compound for Group 2 was also identified as fungichromin even though its production level was much lower than Group 1. The antifungal activity of Group 3 was linked to actiphenol. The observed antifungal activity of the isolated actinomycetes could contribute to protection of the plant material against common saprophytic fungi, as fungichromin was also detected in extracts of the infructescence. The results of this study suggest that the antifungal Streptomyces spp. could play an important role in defining the microbial population associated with Protea infructescences.

...